These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23623468)
1. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism. Zhou H; Lv P; Shen Y; Wang J; Fan J Water Res; 2013 Jun; 47(10):3514-22. PubMed ID: 23623468 [TBL] [Abstract][Full Text] [Related]
2. Removal of residual functionalized ionic liquids from water by ultrasound-assisted zero-valent iron/activated carbon. Zhou H; Lv P; Qi H; Ma J; Wang J Environ Technol; 2019 Aug; 40(19):2504-2512. PubMed ID: 29464989 [TBL] [Abstract][Full Text] [Related]
3. Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system. Zhou H; Shen Y; Lv P; Wang J; Li P J Hazard Mater; 2015 Mar; 284():241-52. PubMed ID: 25463239 [TBL] [Abstract][Full Text] [Related]
4. Degradation of 1-alkyl-3-methylimidazolium tetrafluoroborate in an ultrasonic zero-valent zinc and activated carbon micro-electrolysis system. Lyu P; Guo W; Qi H; Yuan X; Ma J; Xu X; Zhou H Sci Rep; 2023 Feb; 13(1):1951. PubMed ID: 36732576 [TBL] [Abstract][Full Text] [Related]
5. Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis. Wang C; Wei Z; Wang L; Sun P; Wang Z Ecotoxicol Environ Saf; 2015 May; 115():112-8. PubMed ID: 25682588 [TBL] [Abstract][Full Text] [Related]
6. The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system. Siedlecka EM; Stepnowski P Environ Sci Pollut Res Int; 2009 Jun; 16(4):453-8. PubMed ID: 18941817 [TBL] [Abstract][Full Text] [Related]
8. Effects of ionic liquids on membrane fusion and lipid aggregation of egg-PC liposomes. Galletti P; Malferrari D; Samorì C; Sartor G; Tagliavini E Colloids Surf B Biointerfaces; 2015 Jan; 125():142-50. PubMed ID: 25483843 [TBL] [Abstract][Full Text] [Related]
9. Degradation of imidazolium-based ionic liquids in aqueous solution using plasma electrolysis. Gao J; Chen L; He YY; Yan ZC; Zheng XJ J Hazard Mater; 2014 Jan; 265():261-70. PubMed ID: 24394620 [TBL] [Abstract][Full Text] [Related]
10. Comparative antioxidant status in freshwater fish Carassius auratus exposed to eight imidazolium bromide ionic liquids: a combined experimental and theoretical study. Wang C; Wei Z; Feng M; Wang L; Wang Z Ecotoxicol Environ Saf; 2014 Apr; 102():187-95. PubMed ID: 24530736 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of interaction between imidazolium-based chloride ionic liquids and calf thymus DNA. Liu H; Dong Y; Wu J; Chen C; Liu D; Zhang Q; Du S Sci Total Environ; 2016 Oct; 566-567():1-7. PubMed ID: 27203596 [TBL] [Abstract][Full Text] [Related]
12. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Docherty KM; Dixon JK; Kulpa CF Biodegradation; 2007 Aug; 18(4):481-93. PubMed ID: 17091344 [TBL] [Abstract][Full Text] [Related]
13. Application of ionic liquids in the microwave-assisted extraction of podophyllotoxin from Chinese herbal medicine. Yuan Y; Wang Y; Xu R; Huang M; Zeng H Analyst; 2011 Jun; 136(11):2294-305. PubMed ID: 21472161 [TBL] [Abstract][Full Text] [Related]
14. Aggregation of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) in D2O: a NMR study. Zhao Y; Gao S; Wang J; Tang J J Phys Chem B; 2008 Feb; 112(7):2031-9. PubMed ID: 18229912 [TBL] [Abstract][Full Text] [Related]
15. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Pham TP; Cho CW; Jeon CO; Chung YJ; Lee MW; Yun YS Environ Sci Technol; 2009 Jan; 43(2):516-21. PubMed ID: 19238988 [TBL] [Abstract][Full Text] [Related]
16. Degradation of 4-CP in an internal electrolysis system. Bian WJ; Shen XY; Lei LC J Environ Sci (China); 2004; 16(2):234-7. PubMed ID: 15137645 [TBL] [Abstract][Full Text] [Related]
17. Comparison of imidazolium ionic liquids and traditional organic solvents: effect on activated sludge processes. Gendaszewska D; Liwarska-Bizukojc E Water Sci Technol; 2013; 68(12):2654-60. PubMed ID: 24355854 [TBL] [Abstract][Full Text] [Related]
18. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Pham TP; Cho CW; Yun YS Environ Sci Pollut Res Int; 2016 Mar; 23(5):4294-300. PubMed ID: 26330315 [TBL] [Abstract][Full Text] [Related]
19. X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation-anion interactions and a comparison to imidazolium-based analogues. Men S; Lovelock KR; Licence P Phys Chem Chem Phys; 2011 Sep; 13(33):15244-55. PubMed ID: 21779587 [TBL] [Abstract][Full Text] [Related]
20. Cucurbit[7]uril host-guest complexes and [2]pseudorotaxanes with N-methylpiperidinium, N-methylpyrrolidinium, and N-methylmorpholinium cations in aqueous solution. Gamal-Eldin MA; Macartney DH Org Biomol Chem; 2013 Feb; 11(7):1234-41. PubMed ID: 23314170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]