These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23623555)

  • 1. An iron-rich organelle in the cuticular plate of avian hair cells.
    Lauwers M; Pichler P; Edelman NB; Resch GP; Ushakova L; Salzer MC; Heyers D; Saunders M; Shaw J; Keays DA
    Curr Biol; 2013 May; 23(10):924-9. PubMed ID: 23623555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cuticular plate: a riddle, wrapped in a mystery, inside a hair cell.
    Pollock LM; McDermott BM
    Birth Defects Res C Embryo Today; 2015 Jun; 105(2):126-39. PubMed ID: 26104653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcellular analysis of pigeon hair cells implicates vesicular trafficking in cuticulosome formation and maintenance.
    Nimpf S; Malkemper EP; Lauwers M; Ushakova L; Nordmann G; Wenninger-Weinzierl A; Burkard TR; Jacob S; Heuser T; Resch GP; Keays DA
    Elife; 2017 Nov; 6():. PubMed ID: 29140244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle.
    Pacentine I; Chatterjee P; Barr-Gillespie PG
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1.
    Correia MJ; Wood TG; Prusak D; Weng T; Rennie KJ; Wang HQ
    Physiol Genomics; 2004 Oct; 19(2):155-69. PubMed ID: 15316115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The morphological differences of stereocilia and cuticular plates between type-I and type-II hair cells of human vestibular sensory epithelia.
    Morita I; Komatsuzaki A; Tatsuoka H
    ORL J Otorhinolaryngol Relat Spec; 1997; 59(4):193-7. PubMed ID: 9253022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells.
    Slepecky N; Chamberlain SC
    Hear Res; 1985; 20(3):245-60. PubMed ID: 3910630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia.
    Dumont RA; Zhao YD; Holt JR; Bähler M; Gillespie PG
    J Assoc Res Otolaryngol; 2002 Dec; 3(4):375-89. PubMed ID: 12486594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium.
    Kikkawa Y; Mburu P; Morse S; Kominami R; Townsend S; Brown SD
    Hum Mol Genet; 2005 Feb; 14(3):391-400. PubMed ID: 15590699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of myosin VI in the differentiation of cochlear hair cells.
    Self T; Sobe T; Copeland NG; Jenkins NA; Avraham KB; Steel KP
    Dev Biol; 1999 Oct; 214(2):331-41. PubMed ID: 10525338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocsyn and mitochondrial-canalicular complexes in vestibular hair cells.
    Vautrin J; Travo C; Boyer C; Ventéo S; Favre D; Dechesne CJ
    Hear Res; 2006 Dec; 222(1-2):28-34. PubMed ID: 17045436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin.
    Goodyear R; Richardson G
    J Comp Neurol; 1994 Jul; 345(2):267-78. PubMed ID: 7929901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for changes in beta- and gamma-actin proportions during inner ear hair cell life.
    Andrade LR
    Cytoskeleton (Hoboken); 2015 Jun; 72(6):282-91. PubMed ID: 26033950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction.
    Vranceanu F; Perkins GA; Terada M; Chidavaenzi RL; Ellisman MH; Lysakowski A
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4473-8. PubMed ID: 22396594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The morphology of the inner ear from the domestic pig (Sus scrofa).
    Lovell JM; Harper GM
    J Microsc; 2007 Dec; 228(Pt 3):345-57. PubMed ID: 18045329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease.
    Ciuman RR
    J Laryngol Otol; 2011 Oct; 125(10):991-1003. PubMed ID: 21774850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for mechanical transduction in the frog vestibular sensory apparatus: II. The role of microtubules in the organization of the cuticular plate.
    Jaeger RG; Fex J; Kachar B
    Hear Res; 1994 Jun; 77(1-2):207-15. PubMed ID: 7928733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus.
    Wanner SJ; Miller JR
    J Cell Sci; 2007 Aug; 120(Pt 15):2641-51. PubMed ID: 17635997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of leukocyte subtypes in chicken inner ear sensory epithelia.
    O'Halloran EK; Oesterle EC
    J Comp Neurol; 2004 Jul; 475(3):340-60. PubMed ID: 15221950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.