BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23624006)

  • 1. Integration of QSAR models for bioconcentration suitable for REACH.
    Gissi A; Nicolotti O; Carotti A; Gadaleta D; Lombardo A; Benfenati E
    Sci Total Environ; 2013 Jul; 456-457():325-32. PubMed ID: 23624006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes.
    Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O
    ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF).
    Gissi A; Lombardo A; Roncaglioni A; Gadaleta D; Mangiatordi GF; Nicolotti O; Benfenati E
    Environ Res; 2015 Feb; 137():398-409. PubMed ID: 25616163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models.
    Petoumenou MI; Pizzo F; Cester J; Fernández A; Benfenati E
    Environ Res; 2015 Oct; 142():529-34. PubMed ID: 26282223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using toxicological evidence from QSAR models in practice.
    Benfenati E; Pardoe S; Martin T; Gonella Diaza R; Lombardo A; Manganaro A; Gissi A
    ALTEX; 2013; 30(1):19-40. PubMed ID: 23338804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of QSAR models for predicting the partition coefficient (log P) of chemicals under the REACH regulation.
    Cappelli CI; Benfenati E; Cester J
    Environ Res; 2015 Nov; 143(Pt A):26-32. PubMed ID: 26432472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of existing (Q)SAR models for skin and eye irritation and corrosion to use for REACH registration.
    Verheyen GR; Braeken E; Van Deun K; Van Miert S
    Toxicol Lett; 2017 Jan; 265():47-52. PubMed ID: 27865849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH.
    Nendza M; Gabbert S; Kühne R; Lombardo A; Roncaglioni A; Benfenati E; Benigni R; Bossa C; Strempel S; Scheringer M; Fernández A; Rallo R; Giralt F; Dimitrov S; Mekenyan O; Bringezu F; Schüürmann G
    Regul Toxicol Pharmacol; 2013 Aug; 66(3):301-14. PubMed ID: 23707536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the status of alternative approaches to animal testing and the development of integrated testing strategies for assessing the toxicity of chemicals under REACH--a summary of a DEFRA-funded project conducted by Liverpool John Moores University and FRAME.
    Grindon C; Combes R; Cronin MT; Roberts DW; Garrod J
    Altern Lab Anim; 2006 Mar; 34 Suppl 1():149-58. PubMed ID: 16555968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating QSAR and read-across for environmental assessment.
    Benfenati E; Roncaglioni A; Petoumenou MI; Cappelli CI; Gini G
    SAR QSAR Environ Res; 2015; 26(7-9):605-18. PubMed ID: 26535447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local lazy regression: making use of the neighborhood to improve QSAR predictions.
    Guha R; Dutta D; Jurs PC; Chen T
    J Chem Inf Model; 2006; 46(4):1836-47. PubMed ID: 16859315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the bioconcentration factor of highly hydrophobic organic chemicals.
    Garg R; Smith CJ
    Food Chem Toxicol; 2014 Jul; 69():252-9. PubMed ID: 24759698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expert QSAR system for predicting the bioconcentration factor under the REACH regulation.
    Grisoni F; Consonni V; Vighi M; Villa S; Todeschini R
    Environ Res; 2016 Jul; 148():507-512. PubMed ID: 27152714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity.
    Aptula AO; Roberts DW
    Chem Res Toxicol; 2006 Aug; 19(8):1097-105. PubMed ID: 16918251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.
    Nendza M; Kühne R; Lombardo A; Strempel S; Schüürmann G
    Sci Total Environ; 2018 Mar; 616-617():97-106. PubMed ID: 29107783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of mechanistic categories and local models to facilitate the prediction of toxicity.
    Cronin MT; Enoch SJ; Hewitt M; Madden JC
    ALTEX; 2011; 28(1):45-9. PubMed ID: 21311849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR models for bioconcentration: is the increase in the complexity justified by more accurate predictions?
    Grisoni F; Consonni V; Villa S; Vighi M; Todeschini R
    Chemosphere; 2015 May; 127():171-9. PubMed ID: 25703779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides.
    Jackson SH; Cowan-Ellsberry CE; Thomas G
    J Agric Food Chem; 2009 Feb; 57(3):958-67. PubMed ID: 19138085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.