BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 23624222)

  • 1. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material.
    Hong D; Saha P; Chou DT; Lee B; Collins BE; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8534-47. PubMed ID: 23851175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications.
    Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M
    Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds.
    Putra NE; Leeflang MA; Taheri P; Fratila-Apachitei LE; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2021 Oct; 134():774-790. PubMed ID: 34311105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility.
    He J; He FL; Li DW; Liu YL; Yin DC
    Colloids Surf B Biointerfaces; 2016 Jun; 142():325-333. PubMed ID: 26970820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies.
    Hermawan H; Purnama A; Dube D; Couet J; Mantovani D
    Acta Biomater; 2010 May; 6(5):1852-60. PubMed ID: 19941977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the electrochemical behaviour and biological performance of Ti-25Ta-5Zr alloy by thermo-mechanical processing.
    Cimpean A; Vasilescu E; Drob P; Cinca I; Vasilescu C; Anastasescu M; Mitran V; Drob SI
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():127-42. PubMed ID: 24656361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques.
    Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrusion-based 3D printed biodegradable porous iron.
    Putra NE; Leeflang MA; Minneboo M; Taheri P; Fratila-Apachitei LE; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2021 Feb; 121():741-756. PubMed ID: 33221501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of cytocompatibility and degradation of iron-based biodegradable materials.
    Oriňaková R; Oriňak A; Giretová M; Medvecký L; Kupková M; Hrubovčáková M; Maskal'ová I; Macko J; Kal'avský F
    J Biomater Appl; 2016 Feb; 30(7):1060-70. PubMed ID: 26553881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design strategy for biodegradable Fe-based alloys for medical applications.
    Schinhammer M; Hänzi AC; Löffler JF; Uggowitzer PJ
    Acta Biomater; 2010 May; 6(5):1705-13. PubMed ID: 19654056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.
    Cox SC; Thornby JA; Gibbons GJ; Williams MA; Mallick KK
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():237-47. PubMed ID: 25492194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.