BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23624285)

  • 1. Preparation and properties of g-TTCP/PBS nanocomposites and its in vitro biocompatibility assay.
    Fan RR; Zhou LX; Song W; Li de X; Zhang DM; Ye R; Zheng Y; Guo G
    Int J Biol Macromol; 2013 Aug; 59():227-34. PubMed ID: 23624285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z; Zhang P; Liu A; Chen L; Chen X; Jing X
    J Biomed Mater Res A; 2007 Jun; 81(3):515-22. PubMed ID: 17133447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility.
    Hong Z; Zhang P; He C; Qiu X; Liu A; Chen L; Chen X; Jing X
    Biomaterials; 2005 Nov; 26(32):6296-304. PubMed ID: 15913758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.
    Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK
    Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.
    Wang J; Qu L; Meng X; Gao J; Li H; Wen G
    Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation.
    Luo BH; Hsu CE; Li JH; Zhao LF; Liu MX; Wang XY; Zhou CR
    J Biomed Nanotechnol; 2013 Apr; 9(4):649-58. PubMed ID: 23621025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks.
    Ba C; Yang J; Hao Q; Liu X; Cao A
    Biomacromolecules; 2003; 4(6):1827-34. PubMed ID: 14606915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK
    Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, mechanical property and cytocompatibility of poly(L-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires.
    Dou Y; Wu C; Chang J
    Acta Biomater; 2012 Nov; 8(11):4139-50. PubMed ID: 22813849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization.
    Kim D; Andou Y; Shirai Y; Nishida H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.
    Hickey DJ; Ercan B; Sun L; Webster TJ
    Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation.
    Fang HW; Kao WY; Lin PI; Chang GW; Hung YJ; Chen RM
    Ann Biomed Eng; 2015 Aug; 43(8):1999-2009. PubMed ID: 25549776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications.
    Datta P; Chatterjee J; Dhara S
    J Biomater Sci Polym Ed; 2013; 24(6):696-713. PubMed ID: 23565910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite scaffolds of dicalcium phosphate anhydrate /multi-(amino acid) copolymer: in vitro degradability and osteoblast biocompatibility.
    Yao Q; Ye J; Xu Q; Mo A; Gong P
    J Biomater Sci Polym Ed; 2015; 26(4):211-23. PubMed ID: 25554826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials.
    Fan R; Deng X; Zhou L; Gao X; Fan M; Wang Y; Guo G
    Int J Nanomedicine; 2014; 9():615-26. PubMed ID: 24489468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.