BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23624291)

  • 1. Determinants of stress fracture risk in United States Military Academy cadets.
    Cosman F; Ruffing J; Zion M; Uhorchak J; Ralston S; Tendy S; McGuigan FE; Lindsay R; Nieves J
    Bone; 2013 Aug; 55(2):359-66. PubMed ID: 23624291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress fracture injury in young military men and women.
    Armstrong DW; Rue JP; Wilckens JH; Frassica FJ
    Bone; 2004 Sep; 35(3):806-16. PubMed ID: 15336620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress fracture risk factors in basic combat training.
    Knapik J; Montain SJ; McGraw S; Grier T; Ely M; Jones BH
    Int J Sports Med; 2012 Nov; 33(11):940-6. PubMed ID: 22821178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of lifestyle factors on stress fractures in female Army recruits.
    Lappe JM; Stegman MR; Recker RR
    Osteoporos Int; 2001; 12(1):35-42. PubMed ID: 11305081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors.
    Beck TJ; Ruff CB; Shaffer RA; Betsinger K; Trone DW; Brodine SK
    Bone; 2000 Sep; 27(3):437-44. PubMed ID: 10962357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Step test performance and risk of stress fractures among female army trainees.
    Cowan DN; Bedno SA; Urban N; Lee DS; Niebuhr DW
    Am J Prev Med; 2012 Jun; 42(6):620-4. PubMed ID: 22608380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess Stress Fractures, Musculoskeletal Injuries, and Health Care Utilization Among Unfit and Overweight Female Army Trainees.
    Krauss MR; Garvin NU; Boivin MR; Cowan DN
    Am J Sports Med; 2017 Feb; 45(2):311-316. PubMed ID: 27881384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk factors for stress fracture among young female cross-country runners.
    Kelsey JL; Bachrach LK; Procter-Gray E; Nieves J; Greendale GA; Sowers M; Brown BW; Matheson KA; Crawford SL; Cobb KL
    Med Sci Sports Exerc; 2007 Sep; 39(9):1457-63. PubMed ID: 17805074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexural wave propagation velocity and bone mineral density in females with and without tibial bone stress injuries.
    Girrbach RT; Flynn TW; Browder DA; Guffie KL; Moore JH; Masullo LN; Bare AC; Bradley Y
    J Orthop Sports Phys Ther; 2001 Feb; 31(2):54-62; discussion 63-9. PubMed ID: 11232740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone stress injuries in the Army cadets of Pakistan Military Academy.
    Khan K; Khan AA; Ahmad S; Jeilani A; Khan ZR
    J Ayub Med Coll Abbottabad; 2008; 20(4):55-8. PubMed ID: 19999205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle.
    Finestone A; Milgrom C
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S623-9. PubMed ID: 18849873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlates of stress fractures among preadolescent and adolescent girls.
    Loud KJ; Gordon CM; Micheli LJ; Field AE
    Pediatrics; 2005 Apr; 115(4):e399-406. PubMed ID: 15805341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk factors for bone stress injuries: a follow-up study of 102,515 person-years.
    Mattila VM; Niva M; Kiuru M; Pihlajamäki H
    Med Sci Sports Exerc; 2007 Jul; 39(7):1061-6. PubMed ID: 17596772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men.
    Ruohola JP; Laaksi I; Ylikomi T; Haataja R; Mattila VM; Sahi T; Tuohimaa P; Pihlajamäki H
    J Bone Miner Res; 2006 Sep; 21(9):1483-8. PubMed ID: 16939407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture prediction from bone mineral density in Japanese men and women.
    Fujiwara S; Kasagi F; Masunari N; Naito K; Suzuki G; Fukunaga M
    J Bone Miner Res; 2003 Aug; 18(8):1547-53. PubMed ID: 12929946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.
    Finestone A; Milgrom C; Wolf O; Petrov K; Evans R; Moran D
    Foot Ankle Int; 2011 Jan; 32(1):16-20. PubMed ID: 21288430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress fractures in female army recruits: implications of bone density, calcium intake, and exercise.
    Cline AD; Jansen GR; Melby CL
    J Am Coll Nutr; 1998 Apr; 17(2):128-35. PubMed ID: 9550456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress fracture and military medical readiness: bridging basic and applied research.
    Friedl KE; Evans RK; Moran DS
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S609-22. PubMed ID: 18849874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction model for stress fracture in young female recruits during basic training.
    Moran DS; Israeli E; Evans RK; Yanovich R; Constantini N; Shabshin N; Merkel D; Luria O; Erlich T; Laor A; Finestone A
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S636-44. PubMed ID: 18849871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete: a review of the literature.
    Tenforde AS; Sayres LC; Sainani KL; Fredericson M
    PM R; 2010 Oct; 2(10):945-9. PubMed ID: 20970764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.