BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23624292)

  • 1. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates.
    Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R
    Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography.
    Lukas C; Ruffoni D; Lambers FM; Schulte FA; Kuhn G; Kollmannsberger P; Weinkamer R; Müller R
    Bone; 2013 Sep; 56(1):55-60. PubMed ID: 23684803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype.
    Webster D; Wasserman E; Ehrbar M; Weber F; Bab I; Müller R
    Biomech Model Mechanobiol; 2010 Dec; 9(6):737-47. PubMed ID: 20352279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminished response to in vivo mechanical loading in trabecular and not cortical bone in adulthood of female C57Bl/6 mice coincides with a reduction in deformation to load.
    Willie BM; Birkhold AI; Razi H; Thiele T; Aido M; Kruck B; Schill A; Checa S; Main RP; Duda GN
    Bone; 2013 Aug; 55(2):335-46. PubMed ID: 23643681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.
    Schulte FA; Lambers FM; Kuhn G; Müller R
    Bone; 2011 Mar; 48(3):433-42. PubMed ID: 20950723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment.
    Kim CH; Takai E; Zhou H; von Stechow D; Müller R; Dempster DW; Guo XE
    J Bone Miner Res; 2003 Dec; 18(12):2116-25. PubMed ID: 14672346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography.
    Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R
    Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis.
    Lambers FM; Kuhn G; Schulte FA; Koch K; Müller R
    Calcif Tissue Int; 2012 Feb; 90(2):108-19. PubMed ID: 22159822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risedronate does not reduce mechanical loading-related increases in cortical and trabecular bone mass in mice.
    Sugiyama T; Meakin LB; Galea GL; Jackson BF; Lanyon LE; Ebetino FH; Russell RG; Price JS
    Bone; 2011 Jul; 49(1):133-9. PubMed ID: 21497678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.
    Heep H; Wedemeyer C; Wegner A; Hofmeister S; von Knoch M
    Int J Biol Sci; 2008 Jun; 4(3):169-75. PubMed ID: 18566694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of age on adaptive bone formation and bone resorption.
    Birkhold AI; Razi H; Duda GN; Weinkamer R; Checa S; Willie BM
    Biomaterials; 2014 Nov; 35(34):9290-301. PubMed ID: 25128376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone morphology allows estimation of loading history in a murine model of bone adaptation.
    Christen P; van Rietbergen B; Lambers FM; Müller R; Ito K
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):483-92. PubMed ID: 21735242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone.
    Li Z; Kuhn G; von Salis-Soglio M; Cooke SJ; Schirmer M; Müller R; Ruffoni D
    Bone; 2015 Dec; 81():468-477. PubMed ID: 26303288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.
    De Smet E; Jaecques SV; Wevers M; Sloten JV; Naert IE
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):358-66. PubMed ID: 21815993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Clinical Biomechanics Award 2012 - presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment.
    Levchuk A; Zwahlen A; Weigt C; Lambers FM; Badilatti SD; Schulte FA; Kuhn G; Müller R
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):355-62. PubMed ID: 24467970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.
    Roshan-Ghias A; Lambers FM; Gholam-Rezaee M; Müller R; Pioletti DP
    Bone; 2011 Dec; 49(6):1357-64. PubMed ID: 21958844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.