These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23624477)

  • 1. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis.
    Duan X; Chen J; Wu J
    Appl Environ Microbiol; 2013 Jul; 79(13):4072-7. PubMed ID: 23624477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation.
    Duan X; Wu J
    Appl Environ Microbiol; 2015 Mar; 81(6):1926-31. PubMed ID: 25556190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pullulanase with high temperature and low pH optima improved starch saccharification efficiency.
    Niu D; Cong H; Zhang Y; Mchunu NP; Wang ZX
    Sci Rep; 2022 Dec; 12(1):21942. PubMed ID: 36536070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket.
    Wang X; Nie Y; Xu Y
    J Agric Food Chem; 2018 Dec; 66(50):13236-13242. PubMed ID: 30499289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase.
    Chen A; Xu T; Ge Y; Wang L; Tang W; Li S
    Enzyme Microb Technol; 2019 May; 124():79-83. PubMed ID: 30797482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42.
    Pang B; Zhou L; Cui W; Liu Z; Zhou Z
    Appl Biochem Biotechnol; 2020 Jul; 191(3):942-954. PubMed ID: 31939086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability.
    Bi J; Chen S; Zhao X; Nie Y; Xu Y
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7551-7562. PubMed ID: 32632476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design.
    Chang M; Chu X; Lv J; Li Q; Tian J; Wu N
    PLoS One; 2016; 11(10):e0165006. PubMed ID: 27764201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disorder prediction-based construct optimization improves activity and catalytic efficiency of Bacillus naganoensis pullulanase.
    Wang X; Nie Y; Mu X; Xu Y; Xiao R
    Sci Rep; 2016 Apr; 6():24574. PubMed ID: 27091115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved thermostability of type I pullulanase from Bacillus thermoliquefaciens by error-prone PCR.
    Liu M; Li Q; Liu X; Zhang P; Zhang H
    Enzyme Microb Technol; 2023 Sep; 169():110290. PubMed ID: 37473696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism
    Pang B; Zhou L; Cui W; Liu Z; Zhou S; Xu J; Zhou Z
    J Agric Food Chem; 2019 Aug; 67(34):9611-9617. PubMed ID: 31385500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis.
    Duan X; Cheng S; Ai Y; Wu J
    PLoS One; 2016; 11(2):e0149208. PubMed ID: 26886729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency.
    Lu Z; Hu X; Shen P; Wang Q; Zhou Y; Zhang G; Ma Y
    Int J Biol Macromol; 2018 Apr; 109():1302-1310. PubMed ID: 29175162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated Protein Thermal Detection (SPTD) for Enzyme Thermostability Study and an Application Example for Pullulanase from Bacillus deramificans.
    Li JX; Wang SQ; Du QS; Wei H; Li XM; Meng JZ; Wang QY; Xie NZ; Huang RB; Chou KC
    Curr Pharm Des; 2018; 24(34):4023-4033. PubMed ID: 30421671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli.
    Duan X; Zou C; Wu J
    Bioresour Technol; 2015 Oct; 194():137-43. PubMed ID: 26188556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168.
    Li X; Bai Y; Ji H; Wang J; Cui Y; Jin Z
    Int J Biol Macromol; 2019 Jul; 133():920-928. PubMed ID: 31028806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions.
    Ben Mabrouk S; Aghajari N; Ben Ali M; Ben Messaoud E; Juy M; Haser R; Bejar S
    Bioresour Technol; 2011 Jan; 102(2):1740-6. PubMed ID: 20855205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium.
    Kim SY; Kim H; Kim YJ; Jung DH; Seo DH; Jung JH; Park CS
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1340-1349. PubMed ID: 34740684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.