BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23624859)

  • 1. The microtubule-associated tau protein has intrinsic acetyltransferase activity.
    Cohen TJ; Friedmann D; Hwang AW; Marmorstein R; Lee VM
    Nat Struct Mol Biol; 2013 Jun; 20(6):756-62. PubMed ID: 23624859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylated tau, a novel pathological signature in Alzheimer's disease and other tauopathies.
    Irwin DJ; Cohen TJ; Grossman M; Arnold SE; Xie SX; Lee VM; Trojanowski JQ
    Brain; 2012 Mar; 135(Pt 3):807-18. PubMed ID: 22366796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.
    Cohen TJ; Constance BH; Hwang AW; James M; Yuan CX
    PLoS One; 2016; 11(7):e0158470. PubMed ID: 27383765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acetylation of tau inhibits its function and promotes pathological tau aggregation.
    Cohen TJ; Guo JL; Hurtado DE; Kwong LK; Mills IP; Trojanowski JQ; Lee VM
    Nat Commun; 2011; 2():252. PubMed ID: 21427723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased acetylation of microtubules rescues human tau-induced microtubule defects and neuromuscular junction abnormalities in
    Mao CX; Wen X; Jin S; Zhang YQ
    Dis Model Mech; 2017 Oct; 10(10):1245-1252. PubMed ID: 28819043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tau K321/K353 pseudoacetylation within KXGS motifs regulates tau-microtubule interactions and inhibits aggregation.
    Xia Y; Bell BM; Giasson BI
    Sci Rep; 2021 Aug; 11(1):17069. PubMed ID: 34426645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubulin acetyltransferase αTAT1 destabilizes microtubules independently of its acetylation activity.
    Kalebic N; Martinez C; Perlas E; Hublitz P; Bilbao-Cortes D; Fiedorczuk K; Andolfo A; Heppenstall PA
    Mol Cell Biol; 2013 Mar; 33(6):1114-23. PubMed ID: 23275437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications within tau paired helical filament nucleating motifs perturb microtubule interactions and oligomer formation.
    Acosta DM; Mancinelli C; Bracken C; Eliezer D
    J Biol Chem; 2022 Jan; 298(1):101442. PubMed ID: 34838590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members.
    Hwang AW; Trzeciakiewicz H; Friedmann D; Yuan CX; Marmorstein R; Lee VM; Cohen TJ
    PLoS One; 2016; 11(12):e0168913. PubMed ID: 28002468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy.
    Trzeciakiewicz H; Tseng JH; Wander CM; Madden V; Tripathy A; Yuan CX; Cohen TJ
    Sci Rep; 2017 Mar; 7():44102. PubMed ID: 28287136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance analysis of the acetylation pattern of the neuronal Tau protein.
    Kamah A; Huvent I; Cantrelle FX; Qi H; Lippens G; Landrieu I; Smet-Nocca C
    Biochemistry; 2014 May; 53(18):3020-32. PubMed ID: 24708343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular factors modulating the mechanism of tau protein aggregation.
    Fontaine SN; Sabbagh JJ; Baker J; Martinez-Licha CR; Darling A; Dickey CA
    Cell Mol Life Sci; 2015 May; 72(10):1863-79. PubMed ID: 25666877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the Effect of Lysine Acetylation on the Misfolding and Aggregation of Human Tau Fragment
    Shah SJA; Zhong H; Zhang Q; Liu H
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unique tau conformation generated by an acetylation-mimic substitution modulates P301S-dependent tau pathology and hyperphosphorylation.
    Ajit D; Trzeciakiewicz H; Tseng JH; Wander CM; Chen Y; Ajit A; King DP; Cohen TJ
    J Biol Chem; 2019 Nov; 294(45):16698-16711. PubMed ID: 31543505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An acetylation-phosphorylation switch that regulates tau aggregation propensity and function.
    Carlomagno Y; Chung DC; Yue M; Castanedes-Casey M; Madden BJ; Dunmore J; Tong J; DeTure M; Dickson DW; Petrucelli L; Cook C
    J Biol Chem; 2017 Sep; 292(37):15277-15286. PubMed ID: 28760828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling.
    Shah SJA; Zhang Q; Guo J; Liu H; Liu H; Villà-Freixa J
    ACS Chem Neurosci; 2023 Nov; 14(21):3959-3971. PubMed ID: 37830541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Two Cysteines of Tau Protein Are Functionally Distinct and Contribute Differentially to Its Pathogenicity
    Prifti E; Tsakiri EN; Vourkou E; Stamatakis G; Samiotaki M; Papanikolopoulou K
    J Neurosci; 2021 Jan; 41(4):797-810. PubMed ID: 33334867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase.
    Tabassum Z; Tseng JH; Isemann C; Tian X; Chen Y; Herring LE; Cohen TJ
    J Biol Chem; 2022 Jun; 298(6):101977. PubMed ID: 35469920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats.
    Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q
    J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation.
    Grinberg LT; Wang X; Wang C; Sohn PD; Theofilas P; Sidhu M; Arevalo JB; Heinsen H; Huang EJ; Rosen H; Miller BL; Gan L; Seeley WW
    Acta Neuropathol; 2013 Apr; 125(4):581-93. PubMed ID: 23371364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.