BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23624861)

  • 1. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.
    Quistgaard EM; Löw C; Moberg P; Trésaugues L; Nordlund P
    Nat Struct Mol Biol; 2013 Jun; 20(6):766-8. PubMed ID: 23624861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved movement of TMS11 between occluded conformations of LacY and XylE of the major facilitator superfamily suggests a similar hinge-like mechanism.
    Västermark Å; Driker A; Li J; Saier MH
    Proteins; 2015 Apr; 83(4):735-45. PubMed ID: 25586173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-mediated crystallization of the xylose transporter XylE from Escherichia coli in three different crystal forms.
    Quistgaard EM; Löw C; Moberg P; Nordlund P
    J Struct Biol; 2013 Nov; 184(2):375-8. PubMed ID: 24060988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.
    Sun L; Zeng X; Yan C; Sun X; Gong X; Rao Y; Yan N
    Nature; 2012 Oct; 490(7420):361-6. PubMed ID: 23075985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a fucose transporter in an outward-open conformation.
    Dang S; Sun L; Huang Y; Lu F; Liu Y; Gong H; Wang J; Yan N
    Nature; 2010 Oct; 467(7316):734-8. PubMed ID: 20877283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G; Park MS; Iadanza MG; Zheng H; Gonen T
    Nat Commun; 2014 Aug; 5():4521. PubMed ID: 25088546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of the mammalian fructose transporter GLUT5.
    Nomura N; Verdon G; Kang HJ; Shimamura T; Nomura Y; Sonoda Y; Hussien SA; Qureshi AA; Coincon M; Sato Y; Abe H; Nakada-Nakura Y; Hino T; Arakawa T; Kusano-Arai O; Iwanari H; Murata T; Kobayashi T; Hamakubo T; Kasahara M; Iwata S; Drew D
    Nature; 2015 Oct; 526(7573):397-401. PubMed ID: 26416735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
    Radestock S; Forrest LR
    J Mol Biol; 2011 Apr; 407(5):698-715. PubMed ID: 21315728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units.
    Västermark A; Lunt B; Saier M
    J Mol Microbiol Biotechnol; 2014; 24(2):82-90. PubMed ID: 24603210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the E. coli peptide transporter YbgH.
    Zhao Y; Mao G; Liu M; Zhang L; Wang X; Zhang XC
    Structure; 2014 Aug; 22(8):1152-1160. PubMed ID: 25066136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter.
    Jia R; Martens C; Shekhar M; Pant S; Pellowe GA; Lau AM; Findlay HE; Harris NJ; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2020 Dec; 11(1):6162. PubMed ID: 33268777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily.
    Abramson J; Kaback HR; Iwata S
    Curr Opin Struct Biol; 2004 Aug; 14(4):413-9. PubMed ID: 15313234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Sequence-Function Analysis of the Major Facilitator Superfamily: The "Mix-and-Match" Method.
    Madej MG
    Methods Enzymol; 2015; 557():521-49. PubMed ID: 25950980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing the nonlinear changes of a drug-proton antiporter from inward-open to occluded state.
    Xiao Q; Sun B; Zhou Y; Wang C; Guo L; He J; Deng D
    Biochem Biophys Res Commun; 2021 Jan; 534():272-278. PubMed ID: 33280821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity and path of binding xylopyranose unto E. coli xylose permease.
    Wambo TO; Chen LY; Phelix C; Perry G
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):202-206. PubMed ID: 29032199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct protein-lipid interactions shape the conformational landscape of secondary transporters.
    Martens C; Shekhar M; Borysik AJ; Lau AM; Reading E; Tajkhorshid E; Booth PJ; Politis A
    Nat Commun; 2018 Oct; 9(1):4151. PubMed ID: 30297844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.
    Wood JM; Culham DE; Hillar A; Vernikovska YI; Liu F; Boggs JM; Keates RA
    Biochemistry; 2005 Apr; 44(15):5634-46. PubMed ID: 15823022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of sugar binding kinetics of the E. coli sugar/H
    Bazzone A; Tesmer L; Kurt D; Kaback HR; Fendler K; Madej MG
    J Biol Chem; 2022 Feb; 298(2):101505. PubMed ID: 34929170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.