These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 23624914)
1. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Ye Q; Cai W; Zheng Y; Evers BM; She QB Oncogene; 2014 Apr; 33(14):1828-39. PubMed ID: 23624914 [TBL] [Abstract][Full Text] [Related]
2. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Mi W; Ye Q; Liu S; She QB Oncotarget; 2015 Jun; 6(16):13962-77. PubMed ID: 25961827 [TBL] [Abstract][Full Text] [Related]
3. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Bommer UA; Iadevaia V; Chen J; Knoch B; Engel M; Proud CG Cell Signal; 2015 Aug; 27(8):1557-68. PubMed ID: 25936523 [TBL] [Abstract][Full Text] [Related]
4. 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Wang C; Cigliano A; Jiang L; Li X; Fan B; Pilo MG; Liu Y; Gui B; Sini M; Smith JW; Dombrowski F; Calvisi DF; Evert M; Chen X Hepatology; 2015 Jan; 61(1):200-13. PubMed ID: 25145583 [TBL] [Abstract][Full Text] [Related]
5. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. She QB; Halilovic E; Ye Q; Zhen W; Shirasawa S; Sasazuki T; Solit DB; Rosen N Cancer Cell; 2010 Jul; 18(1):39-51. PubMed ID: 20609351 [TBL] [Abstract][Full Text] [Related]
6. Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Yang F; Deng R; Qian XJ; Chang SH; Wu XQ; Qin J; Feng GK; Ding K; Zhu XF Cell Death Dis; 2014 Mar; 5(3):e1114. PubMed ID: 24625973 [TBL] [Abstract][Full Text] [Related]
7. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Yuen HF; Chan KK; Grills C; Murray JT; Platt-Higgins A; Eldin OS; O'Byrne K; Janne P; Fennell DA; Johnston PG; Rudland PS; El-Tanani M Clin Cancer Res; 2012 Jan; 18(2):380-91. PubMed ID: 22090358 [TBL] [Abstract][Full Text] [Related]
8. The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Wang H; Huang F; Wang J; Wang P; Lv W; Hong L; Li S; Zhou J Cell Cycle; 2015; 14(2):232-42. PubMed ID: 25607647 [TBL] [Abstract][Full Text] [Related]
9. Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. Shi Y; Hsu JH; Hu L; Gera J; Lichtenstein A J Biol Chem; 2002 May; 277(18):15712-20. PubMed ID: 11872747 [TBL] [Abstract][Full Text] [Related]
10. The PP242 mammalian target of rapamycin (mTOR) inhibitor activates extracellular signal-regulated kinase (ERK) in multiple myeloma cells via a target of rapamycin complex 1 (TORC1)/eukaryotic translation initiation factor 4E (eIF-4E)/RAF pathway and activation is a mechanism of resistance. Hoang B; Benavides A; Shi Y; Yang Y; Frost P; Gera J; Lichtenstein A J Biol Chem; 2012 Jun; 287(26):21796-805. PubMed ID: 22556409 [TBL] [Abstract][Full Text] [Related]
11. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Zeng Q; Qin S; Zhang H; Liu B; Qin J; Wang X; Zhang R; Liu C; Dong X; Zhang S; Huang S; Chen L J Cell Physiol; 2018 Jan; 233(1):516-529. PubMed ID: 28300280 [TBL] [Abstract][Full Text] [Related]
12. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Xu K; Wang L; Feng W; Feng Y; Shu HK Oncogene; 2016 Nov; 35(44):5807-5816. PubMed ID: 27065332 [TBL] [Abstract][Full Text] [Related]
13. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. Kazyken D; Lentz SI; Wadley M; Fingar DC J Biol Chem; 2023 Sep; 299(9):105097. PubMed ID: 37507012 [TBL] [Abstract][Full Text] [Related]
15. S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. Nawroth R; Stellwagen F; Schulz WA; Stoehr R; Hartmann A; Krause BJ; Gschwend JE; Retz M PLoS One; 2011; 6(11):e27509. PubMed ID: 22110663 [TBL] [Abstract][Full Text] [Related]
16. New insights into 4E-BP1-regulated translation in cancer progression and metastasis. Wang J; Ye Q; She QB Cancer Cell Microenviron; 2014; 1(5):. PubMed ID: 26005705 [TBL] [Abstract][Full Text] [Related]
17. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines. Murai A; Asa SA; Kodama A; Hirata A; Yanai T; Sakai H BMC Vet Res; 2012 Jul; 8():128. PubMed ID: 22839755 [TBL] [Abstract][Full Text] [Related]
18. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Soni A; Akcakanat A; Singh G; Luyimbazi D; Zheng Y; Kim D; Gonzalez-Angulo A; Meric-Bernstam F Mol Cancer Ther; 2008 Jul; 7(7):1782-8. PubMed ID: 18644990 [TBL] [Abstract][Full Text] [Related]
19. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Dodd KM; Yang J; Shen MH; Sampson JR; Tee AR Oncogene; 2015 Apr; 34(17):2239-50. PubMed ID: 24931163 [TBL] [Abstract][Full Text] [Related]
20. Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion. Chen L; Xu B; Liu L; Liu C; Luo Y; Chen X; Barzegar M; Chung J; Huang S Oncotarget; 2015 Mar; 6(9):7136-50. PubMed ID: 25762619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]