BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23624950)

  • 1. Electrochemical investigation of the interaction between lysozyme-shelled microbubbles and vitamin C.
    Cavalieri F; Micheli L; Zhou M; Tortora M; Palleschi G; Ashokkumar M
    Anal Bioanal Chem; 2013 Jun; 405(16):5531-8. PubMed ID: 23624950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice.
    Hutton EA; PauliukaitÄ— R; Hocevar SB; Ogorevc B; Smyth MR
    Anal Chim Acta; 2010 Sep; 678(2):176-82. PubMed ID: 20888449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and simple electrochemical detection of morphine on graphene-palladium-hybrid-modified glassy carbon electrode.
    Atta NF; Hassan HK; Galal A
    Anal Bioanal Chem; 2014 Nov; 406(27):6933-42. PubMed ID: 25012358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.
    Yan J; Liu S; Zhang Z; He G; Zhou P; Liang H; Tian L; Zhou X; Jiang H
    Colloids Surf B Biointerfaces; 2013 Nov; 111():392-7. PubMed ID: 23850748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring New Applications of Lysozyme-Shelled Microbubbles.
    Lee L; Cavalieri F; Ashokkumar M
    Langmuir; 2019 Aug; 35(31):9997-10006. PubMed ID: 31088060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-sensitive electrochemical sensor for ascorbic acid based on click chemistry.
    Qiu S; Gao S; Xie L; Chen H; Liu Q; Lin Z; Qiu B; Chen G
    Analyst; 2011 Oct; 136(19):3962-6. PubMed ID: 21826289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel amperometric sensor for ascorbic acid based on poly(Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes.
    Kul D; Ghica ME; Pauliukaite R; Brett CM
    Talanta; 2013 Jul; 111():76-84. PubMed ID: 23622528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid.
    Ezhil Vilian AT; Rajkumar M; Chen SM
    Colloids Surf B Biointerfaces; 2014 Mar; 115():295-301. PubMed ID: 24384145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode.
    Wang X; You Z; Sha H; Cheng Y; Zhu H; Sun W
    Talanta; 2014 Oct; 128():373-8. PubMed ID: 25059174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters.
    Mo Q; Liu F; Gao J; Zhao M; Shao N
    Anal Chim Acta; 2018 Mar; 1003():49-55. PubMed ID: 29317029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of ascorbic acid levels in food samples by using an ionic liquid-carbon nanotube composite electrode.
    Ping J; Wang Y; Wu J; Ying Y; Ji F
    Food Chem; 2012 Nov; 135(2):362-7. PubMed ID: 22868100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol).
    Kong Y; Shan X; Ma J; Chen M; Chen Z
    Anal Chim Acta; 2014 Jan; 809():54-60. PubMed ID: 24418133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels.
    Akter R; Kyun Rhee C; Rahman MA
    Biosens Bioelectron; 2014 Apr; 54():351-7. PubMed ID: 24292139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles.
    Mahshid S; Li C; Mahshid SS; Askari M; Dolati A; Yang L; Luo S; Cai Q
    Analyst; 2011 Jun; 136(11):2322-9. PubMed ID: 21494708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic synthesis of stable, functional lysozyme microbubbles.
    Cavalieri F; Ashokkumar M; Grieser F; Caruso F
    Langmuir; 2008 Sep; 24(18):10078-83. PubMed ID: 18710266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles.
    Cavalieri F; Micheli L; Kaliappan S; Teo BM; Zhou M; Palleschi G; Ashokkumar M
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):464-71. PubMed ID: 23265433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative electrochemical study of new self-assembled monolayers of 2-{[(Z)-1-(3-furyl)methylidene]amino}-1-benzenethiol and 2-{[(2-sulfanylphenyl)imino]methyl}phenol for determination of dopamine in the presence of high concentration of ascorbic acid and uric acid.
    Behpour M; Ghoreishi SM; Honarmand E; Salavati-Niasari M
    Analyst; 2011 May; 136(9):1979-86. PubMed ID: 21409249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the physical properties of ultrasonically synthesized lysozyme- and BSA-shelled microbubbles.
    Vong F; Son Y; Bhuiyan S; Zhou M; Cavalieri F; Ashokkumar M
    Ultrason Sonochem; 2014 Jan; 21(1):23-8. PubMed ID: 23735894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein.
    Cai C; Bakowsky U; Rytting E; Schaper AK; Kissel T
    Eur J Pharm Biopharm; 2008 May; 69(1):31-42. PubMed ID: 18023160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode.
    Dong Y; Gao T; Zhou Y; Chu X; Wang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():225-32. PubMed ID: 25022493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.