These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1297 related articles for article (PubMed ID: 23625128)
1. Current approaches for mitigating acid mine drainage. Sahoo PK; Kim K; Equeenuddin SM; Powell MA Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124 [TBL] [Abstract][Full Text] [Related]
4. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation. Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894 [TBL] [Abstract][Full Text] [Related]
5. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. Sima M; Dold B; Frei L; Senila M; Balteanu D; Zobrist J J Hazard Mater; 2011 May; 189(3):624-39. PubMed ID: 21316846 [TBL] [Abstract][Full Text] [Related]
6. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Park I; Tabelin CB; Jeon S; Li X; Seno K; Ito M; Hiroyoshi N Chemosphere; 2019 Mar; 219():588-606. PubMed ID: 30554047 [TBL] [Abstract][Full Text] [Related]
7. Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite. Hwang T; Neculita CM; Han JI J Environ Qual; 2012; 41(6):1857-64. PubMed ID: 23128742 [TBL] [Abstract][Full Text] [Related]
8. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides. Placencia-Gómez E; Slater L; Ntarlagiannis D; Binley A J Contam Hydrol; 2013 May; 148():25-38. PubMed ID: 23531431 [TBL] [Abstract][Full Text] [Related]
9. Silane-based coatings on the pyrite for remediation of acid mine drainage. Diao Z; Shi T; Wang S; Huang X; Zhang T; Tang Y; Zhang X; Qiu R Water Res; 2013 Sep; 47(13):4391-402. PubMed ID: 23764590 [TBL] [Abstract][Full Text] [Related]
10. Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Pérez-López R; Nieto JM; de Almodóvar GR Chemosphere; 2007 Apr; 67(8):1637-46. PubMed ID: 17257643 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of sulfide mineral oxidation by surface coating agents: batch and field studies. Ji MK; Gee ED; Yun HS; Lee WR; Park YT; Khan MA; Jeon BH; Choi J J Hazard Mater; 2012 Aug; 229-230():298-306. PubMed ID: 22727481 [TBL] [Abstract][Full Text] [Related]
12. Microbial diversity response to geochemical gradient characteristics on AMD from abandoned Dashu pyrite mine in Southwest China. Li B; Wang X; Liu G; Zheng L; Cheng C Environ Sci Pollut Res Int; 2022 Oct; 29(49):74983-74997. PubMed ID: 35648344 [TBL] [Abstract][Full Text] [Related]
13. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Cheng H; Hu Y; Luo J; Xu B; Zhao J J Hazard Mater; 2009 Jun; 165(1-3):13-26. PubMed ID: 19070955 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of pyrite oxidation through forming biogenic K-jarosite coatings to prevent acid mine drainage production. Hong M; Wang J; Yang B; Liu Y; Sun X; Li L; Yu S; Liu S; Kang Y; Wang W; Qiu G Water Res; 2024 Mar; 252():121221. PubMed ID: 38324985 [TBL] [Abstract][Full Text] [Related]
15. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania. Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960 [TBL] [Abstract][Full Text] [Related]
17. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Tu Z; Wu Q; He H; Zhou S; Liu J; He H; Liu C; Dang Z; Reinfelder JR Sci Total Environ; 2022 Aug; 832():155116. PubMed ID: 35398133 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849 [TBL] [Abstract][Full Text] [Related]
19. Silicic protective surface films for pyrite oxidation suppression to control acid mine drainage at the source. Wang S; Zhao Y; Li S Environ Sci Pollut Res Int; 2019 Sep; 26(25):25725-25732. PubMed ID: 31267388 [TBL] [Abstract][Full Text] [Related]
20. Environmental applications of chitosan and its derivatives. Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]