These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET). Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634 [TBL] [Abstract][Full Text] [Related]
8. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO Bllaci L; Torsetnes SB; Wierzbicka C; Shinde S; Sellergren B; Rogowska-Wrzesinska A; Jensen ON Anal Chem; 2017 Nov; 89(21):11332-11340. PubMed ID: 28972365 [TBL] [Abstract][Full Text] [Related]
9. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae. Oh Y; Franck WL; Dean RA Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230 [TBL] [Abstract][Full Text] [Related]
10. Optimization of enrichment conditions on TiO2 chromatography using glycerol as an additive reagent for effective phosphoproteomic analysis. Fukuda I; Hirabayashi-Ishioka Y; Sakikawa I; Ota T; Yokoyama M; Uchiumi T; Morita A J Proteome Res; 2013 Dec; 12(12):5587-97. PubMed ID: 24245541 [TBL] [Abstract][Full Text] [Related]
11. Identification and quantitation of signal molecule-dependent protein phosphorylation. Groen A; Thomas L; Lilley K; Marondedze C Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576 [TBL] [Abstract][Full Text] [Related]
12. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis. Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of four phosphopeptide enrichment strategies for mass spectrometry-based proteomic analysis. Ino Y; Kinoshita E; Kinoshita-Kikuta E; Akiyama T; Nakai Y; Nishino K; Osada M; Ryo A; Hirano H; Koike T; Kimura Y Proteomics; 2022 Apr; 22(7):e2100216. PubMed ID: 34932266 [TBL] [Abstract][Full Text] [Related]
14. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells. Yu QW; Li XS; Xiao Y; Guo L; Zhang F; Cai Q; Feng YQ; Yuan BF; Wang Y J Chromatogr A; 2014 Oct; 1365():54-60. PubMed ID: 25262027 [TBL] [Abstract][Full Text] [Related]
15. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
16. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry. Marzban G; Sulaj E Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498 [TBL] [Abstract][Full Text] [Related]
17. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate. Ahmed A; Raja VJ; Cavaliere P; Dephoure N J Proteome Res; 2019 Mar; 18(3):1411-1417. PubMed ID: 30576142 [TBL] [Abstract][Full Text] [Related]
18. [Optimization of titanium dioxide enrichment of phosphopeptides and application in the Thermoanaerobacter tengcongensis phosphoproteome analysis]. Lin W; Wang J; Ying W; Qian X Se Pu; 2012 Aug; 30(8):763-9. PubMed ID: 23256377 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive Evaluation of Different TiO Li J; Wang J; Yan Y; Li N; Qing X; Tuerxun A; Guo X; Chen X; Yang F Cells; 2022 Jun; 11(13):. PubMed ID: 35805136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]