BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23625397)

  • 1. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra.
    Yu LR; Zhu Z; Chan KC; Issaq HJ; Dimitrov DS; Veenstra TD
    J Proteome Res; 2007 Nov; 6(11):4150-62. PubMed ID: 17924679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Phosphoproteomic Using Titanium Dioxide Micro-Columns and Label-Free Quantitation.
    Barrios-Llerena ME; Le Bihan T
    Methods Mol Biol; 2019; 1977():35-42. PubMed ID: 30980321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO
    Bllaci L; Torsetnes SB; Wierzbicka C; Shinde S; Sellergren B; Rogowska-Wrzesinska A; Jensen ON
    Anal Chem; 2017 Nov; 89(21):11332-11340. PubMed ID: 28972365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of enrichment conditions on TiO2 chromatography using glycerol as an additive reagent for effective phosphoproteomic analysis.
    Fukuda I; Hirabayashi-Ishioka Y; Sakikawa I; Ota T; Yokoyama M; Uchiumi T; Morita A
    J Proteome Res; 2013 Dec; 12(12):5587-97. PubMed ID: 24245541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis.
    Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of four phosphopeptide enrichment strategies for mass spectrometry-based proteomic analysis.
    Ino Y; Kinoshita E; Kinoshita-Kikuta E; Akiyama T; Nakai Y; Nishino K; Osada M; Ryo A; Hirano H; Koike T; Kimura Y
    Proteomics; 2022 Apr; 22(7):e2100216. PubMed ID: 34932266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells.
    Yu QW; Li XS; Xiao Y; Guo L; Zhang F; Cai Q; Feng YQ; Yuan BF; Wang Y
    J Chromatogr A; 2014 Oct; 1365():54-60. PubMed ID: 25262027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry.
    Marzban G; Sulaj E
    Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust, Reproducible, and Economical Phosphopeptide Enrichment Using Calcium Titanate.
    Ahmed A; Raja VJ; Cavaliere P; Dephoure N
    J Proteome Res; 2019 Mar; 18(3):1411-1417. PubMed ID: 30576142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optimization of titanium dioxide enrichment of phosphopeptides and application in the Thermoanaerobacter tengcongensis phosphoproteome analysis].
    Lin W; Wang J; Ying W; Qian X
    Se Pu; 2012 Aug; 30(8):763-9. PubMed ID: 23256377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphopeptide Enrichment from Bacterial Samples Utilizing Titanium Oxide Affinity Chromatography.
    Soufi B; Täumer C; Semanjski M; Macek B
    Methods Mol Biol; 2018; 1841():231-247. PubMed ID: 30259490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Evaluation of Different TiO
    Li J; Wang J; Yan Y; Li N; Qing X; Tuerxun A; Guo X; Chen X; Yang F
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.