These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23625563)

  • 1. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations.
    Iwamoto M; Nakahira Y; Kimpara H; Sugiyama T; Min K
    Stapp Car Crash J; 2012 Oct; 56():231-68. PubMed ID: 23625563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.
    Iwamoto M; Nakahira Y; Kimpara H
    Traffic Inj Prev; 2015; 16 Suppl 1():S36-48. PubMed ID: 26027974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The occupant response to autonomous braking: a modeling approach that accounts for active musculature.
    Östh J; Brolin K; Carlsson S; Wismans J; Davidsson J
    Traffic Inj Prev; 2012; 13(3):265-77. PubMed ID: 22607249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A human body model with active muscles for simulation of pretensioned restraints in autonomous braking interventions.
    Osth J; Brolin K; Bråse D
    Traffic Inj Prev; 2015; 16():304-13. PubMed ID: 24950131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.
    Iwamoto M; Nakahira Y
    Stapp Car Crash J; 2015 Nov; 59():53-90. PubMed ID: 26660740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a simplified human body model in relaxed and braced conditions in low-speed frontal sled tests.
    Devane K; Johnson D; Gayzik FS
    Traffic Inj Prev; 2019; 20(8):832-837. PubMed ID: 31549531
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 8. Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction.
    Nie B; Sathyanarayan D; Ye X; Crandall JR; Panzer MB
    Traffic Inj Prev; 2018 Feb; 19(sup1):S76-S82. PubMed ID: 29584491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restraint systems considering occupant diversity and pre-crash posture.
    Boyle K; Fanta A; Reed MP; Fischer K; Smith A; Adler A; Hu J
    Traffic Inj Prev; 2020 Oct; 21(sup1):S31-S36. PubMed ID: 33709859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pediatric occupant human body model kinematic and kinetic response variation to changes in seating posture in simulated frontal impacts - with and without automatic emergency braking.
    Maheshwari J; Sarfare S; Falciani C; Belwadi A
    Traffic Inj Prev; 2020 Oct; 21(sup1):S49-S53. PubMed ID: 33095067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, calibration, and validation of a head-neck complex of THOR mod kit finite element model.
    Putnam JB; Somers JT; Untaroiu CD
    Traffic Inj Prev; 2014; 15(8):844-54. PubMed ID: 24433158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passenger muscle responses in lane change and lane change with braking maneuvers using two belt configurations: Standard and reversible pre-pretensioner.
    Ghaffari G; Brolin K; Pipkorn B; Jakobsson L; Davidsson J
    Traffic Inj Prev; 2019; 20(sup1):S43-S51. PubMed ID: 31381435
    [No Abstract]   [Full Text] [Related]  

  • 13. Optimization of vehicle deceleration to reduce occupant injury risks in frontal impact.
    Mizuno K; Itakura T; Hirabayashi S; Tanaka E; Ito D
    Traffic Inj Prev; 2014; 15(1):48-55. PubMed ID: 24279966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes.
    Gaewsky JP; Weaver AA; Koya B; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 2():S124-31. PubMed ID: 26436221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active muscle response using feedback control of a finite element human arm model.
    Östh J; Brolin K; Happee R
    Comput Methods Biomech Biomed Engin; 2012; 15(4):347-61. PubMed ID: 21294008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of THUMS version 5 with 1D muscle models for active and passive automotive safety research.
    Kimpara H; Nakahira Y; Iwamoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6022-6025. PubMed ID: 28269625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Female kinematics and muscle responses in lane change and lane change with braking maneuvers.
    Ghaffari G; Davidsson J
    Traffic Inj Prev; 2021; 22(3):236-241. PubMed ID: 33688754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal crash simulations using parametric human models representing a diverse population.
    Hu J; Zhang K; Reed MP; Wang JT; Neal M; Lin CH
    Traffic Inj Prev; 2019; 20(sup1):S97-S105. PubMed ID: 31381451
    [No Abstract]   [Full Text] [Related]  

  • 20. Optimization of Female Head-Neck Model with Active Reflexive Cervical Muscles in Low Severity Rear Impact Collisions.
    Putra IPA; Iraeus J; Sato F; Svensson MY; Linder A; Thomson R
    Ann Biomed Eng; 2021 Jan; 49(1):115-128. PubMed ID: 32333133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.