These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23625636)

  • 1. Studies on the toxic interaction mechanism between 2-naphthylamine and herring sperm DNA.
    Lin J; Liu Y; Liu L; Song L
    J Biochem Mol Toxicol; 2013 May; 27(5):279-85. PubMed ID: 23625636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic investigation on the toxic interaction of melamine with herring sperm DNA.
    Sun Y; Liu R; Chi Z; Qin P; Fang X; Mou Y
    J Biochem Mol Toxicol; 2010; 24(5):323-9. PubMed ID: 20196162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic investigation of the interaction of the toxicant, 2-naphthylamine, with bovine serum albumin.
    Liu Y; Chen M; Bian G; Liu J; Song L
    J Biochem Mol Toxicol; 2011; 25(6):362-8. PubMed ID: 21800401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods.
    Hegde AH; Prashanth SN; Seetharamappa J
    J Pharm Biomed Anal; 2012 Apr; 63():40-6. PubMed ID: 22349882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the mechanism of action between dimethyl phthalate and herring sperm DNA at molecular level.
    Chi Z; Wang D; You H
    J Environ Sci Health B; 2016 Aug; 51(8):553-7. PubMed ID: 27166703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation.
    Li XL; Hu YJ; Wang H; Yu BQ; Yue HL
    Biomacromolecules; 2012 Mar; 13(3):873-80. PubMed ID: 22316074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies on the interaction mechanisms of safranin T with herring sperm DNA using acridine orange as a fluorescence probe.
    Long J; Wang XM; Xu DL; Ding LS
    J Mol Recognit; 2014 Mar; 27(3):131-7. PubMed ID: 24446377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a novel 4H-pyran analog as minor groove binder to DNA using ethidium bromide as fluorescence probe.
    Ramana MM; Betkar R; Nimkar A; Ranade P; Mundhe B; Pardeshi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():165-71. PubMed ID: 26208271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic studies on the binding interaction of phenothiazinium dyes toluidine blue O, azure A and azure B to DNA.
    Paul P; Suresh Kumar G
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 107():303-10. PubMed ID: 23434558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-spectroscopic methods combined with molecular modeling dissect the interaction mechanisms of ractopamine and calf thymus DNA.
    Chai J; Wang J; Xu Q; Hao F; Liu R
    Mol Biosyst; 2012 Jul; 8(7):1902-7. PubMed ID: 22610465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: probing partial intercalation and binding properties.
    Grueso E; López-Pérez G; Castellano M; Prado-Gotor R
    J Inorg Biochem; 2012 Jan; 106(1):1-9. PubMed ID: 22105011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a europium complex, Eu(AA)3phen (AA=acrylic acid, phen=1,10-phenanthroline) as a spectroscopic probe and cleaving reagent of DNA.
    Li L; Pan Q; Song GW
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2078-83. PubMed ID: 23498235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-intercalative binding mode of bridged binuclear chiral Ru(II) complexes to native duplex DNA.
    Chitrapriya N; Jang YJ; Kim SK; Lee H
    J Inorg Biochem; 2011 Dec; 105(12):1569-75. PubMed ID: 22071080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro study of DNA interaction with clodinafop-propargyl herbicide.
    Kashanian S; Askari S; Ahmadi F; Omidfar K; Ghobadi S; Tarighat FA
    DNA Cell Biol; 2008 Oct; 27(10):581-6. PubMed ID: 18605901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic study on the interaction between naphthalimide-polyamine conjugates and DNA.
    Tian Z; Zhao Z; Zang F; Wang Y; Wang C
    J Photochem Photobiol B; 2014 Sep; 138():202-10. PubMed ID: 24976624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonated structures of naturally occurring deoxyribonucleic acids and their interaction with berberine.
    Bhadra K; Kumar GS; Das S; Islam MM; Maiti M
    Bioorg Med Chem; 2005 Aug; 13(16):4851-63. PubMed ID: 15946849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the interaction mechanism of 2-aminoanthraquinone with calf thymus DNA.
    Yang H; Song W; Jing M; Liu R
    J Biochem Mol Toxicol; 2013 May; 27(5):272-8. PubMed ID: 23606275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA.
    Jalali F; Dorraji PS
    J Pharm Biomed Anal; 2012 Nov; 70():598-601. PubMed ID: 22742920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of vitamin K3 with herring-sperm DNA using spectroscopy and electrochemistry.
    Huang J; Wang X; Fei D; Ding L
    Appl Spectrosc; 2010 Oct; 64(10):1126-30. PubMed ID: 20925982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration.
    Paul BK; Guchhait N
    J Phys Chem B; 2011 Oct; 115(41):11938-49. PubMed ID: 21899350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.