BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23625889)

  • 21. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans.
    Daub JT; Moretti S; Davydov II; Excoffier L; Robinson-Rechavi M
    Mol Biol Evol; 2017 Jun; 34(6):1391-1402. PubMed ID: 28333345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coalescent under the evolution of coadaptation.
    Ryo Takahasi K
    Mol Ecol; 2009 Dec; 18(24):5018-29. PubMed ID: 19912539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for "polygenic epistasis".
    Rau CD; Gonzales NM; Bloom JS; Park D; Ayroles J; Palmer AA; Lusis AJ; Zaitlen N
    PLoS Genet; 2020 Oct; 16(10):e1009165. PubMed ID: 33104702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why epistasis is important for selection and adaptation.
    Hansen TF
    Evolution; 2013 Dec; 67(12):3501-11. PubMed ID: 24299403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polygenic traits and parasite local adaptation.
    Ridenhour BJ; Nuismer SL
    Evolution; 2007 Feb; 61(2):368-76. PubMed ID: 17348946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation.
    Pritchard JK; Pickrell JK; Coop G
    Curr Biol; 2010 Feb; 20(4):R208-15. PubMed ID: 20178769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A population genetic signal of polygenic adaptation.
    Berg JJ; Coop G
    PLoS Genet; 2014 Aug; 10(8):e1004412. PubMed ID: 25102153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations.
    Zhang C; Bailey DK; Awad T; Liu G; Xing G; Cao M; Valmeekam V; Retief J; Matsuzaki H; Taub M; Seielstad M; Kennedy GC
    Bioinformatics; 2006 Sep; 22(17):2122-8. PubMed ID: 16845142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of Polygenic Adaptation to High Altitude from Tibetan and Sherpa Genomes.
    Gnecchi-Ruscone GA; Abondio P; De Fanti S; Sarno S; Sherpa MG; Sherpa PT; Marinelli G; Natali L; Di Marcello M; Peluzzi D; Luiselli D; Pettener D; Sazzini M
    Genome Biol Evol; 2018 Nov; 10(11):2919-2930. PubMed ID: 30335146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
    Snelling WM; Cushman RA; Keele JW; Maltecca C; Thomas MG; Fortes MR; Reverter A
    J Anim Sci; 2013 Feb; 91(2):537-52. PubMed ID: 23097404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.).
    Renaut S; Nolte AW; Rogers SM; Derome N; Bernatchez L
    Mol Ecol; 2011 Feb; 20(3):545-59. PubMed ID: 21143332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of varying epistasis on the evolution of recombination.
    Kouyos RD; Otto SP; Bonhoeffer S
    Genetics; 2006 Jun; 173(2):589-97. PubMed ID: 16547114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epistasis and balanced polymorphism influencing complex trait variation.
    Kroymann J; Mitchell-Olds T
    Nature; 2005 May; 435(7038):95-8. PubMed ID: 15875023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.
    Jha AR; Miles CM; Lippert NR; Brown CD; White KP; Kreitman M
    Mol Biol Evol; 2015 Oct; 32(10):2616-32. PubMed ID: 26044351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polygenic Adaptation: Integrating Population Genetics and Gene Regulatory Networks.
    Fagny M; Austerlitz F
    Trends Genet; 2021 Jul; 37(7):631-638. PubMed ID: 33892958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic processes underlying rapid adaptation of a natural Chironomus riparius population to unintendedly applied experimental selection pressures.
    Pfenninger M; Foucault Q
    Mol Ecol; 2020 Feb; 29(3):536-548. PubMed ID: 31886913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Admixture-enabled selection for rapid adaptive evolution in the Americas.
    Norris ET; Rishishwar L; Chande AT; Conley AB; Ye K; Valderrama-Aguirre A; Jordan IK
    Genome Biol; 2020 Feb; 21(1):29. PubMed ID: 32028992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The long-term evolution of multilocus traits under frequency-dependent disruptive selection.
    van Doorn GS; Dieckmann U
    Evolution; 2006 Nov; 60(11):2226-38. PubMed ID: 17236416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Weak Epistasis May Drive Adaptation in Recombining Bacteria.
    Arnold BJ; Gutmann MU; Grad YH; Sheppard SK; Corander J; Lipsitch M; Hanage WP
    Genetics; 2018 Mar; 208(3):1247-1260. PubMed ID: 29330348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary genomics of host adaptation in vesicular stomatitis virus.
    Remold SK; Rambaut A; Turner PE
    Mol Biol Evol; 2008 Jun; 25(6):1138-47. PubMed ID: 18353798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.