BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23626001)

  • 1. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites.
    Chen X; Qiu JD; Shi SP; Suo SB; Huang SY; Liang RP
    Bioinformatics; 2013 Jul; 29(13):1614-22. PubMed ID: 23626001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.
    Gao J; Thelen JJ; Dunker AK; Xu D
    Mol Cell Proteomics; 2010 Dec; 9(12):2586-600. PubMed ID: 20702892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
    Nguyen VN; Huang KY; Huang CH; Lai KR; Lee TY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):393-403. PubMed ID: 26887002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SuccFind: a novel succinylation sites online prediction tool via enhanced characteristic strategy.
    Xu HD; Shi SP; Wen PP; Qiu JD
    Bioinformatics; 2015 Dec; 31(23):3748-50. PubMed ID: 26261224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in characterizing ubiquitylation sites by mass spectrometry.
    Sylvestersen KB; Young C; Nielsen ML
    Curr Opin Chem Biol; 2013 Feb; 17(1):49-58. PubMed ID: 23298953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold for ubiquitin in Vancouver: First Conference on Proteomics of Protein Degradation and Ubiquitin Pathways held June 6-8, 2010 in Vancouver, University of British Columbia, organized By Lan Huang, Thibault Mayor, and Peipei Ping.
    Kaiser P; Mayor T
    Mol Cell Proteomics; 2011 May; 10(5):R110.003863. PubMed ID: 20834021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UbiComb: A Hybrid Deep Learning Model for Predicting Plant-Specific Protein Ubiquitylation Sites.
    Siraj A; Lim DY; Tayara H; Chong KT
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34064731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis and prediction of human phosphorylation sites in subcellular level reveal subcellular specificity.
    Chen X; Shi SP; Suo SB; Xu HD; Qiu JD
    Bioinformatics; 2015 Jan; 31(2):194-200. PubMed ID: 25236462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites.
    Lee TY; Chen SA; Hung HY; Ou YY
    PLoS One; 2011 Mar; 6(3):e17331. PubMed ID: 21408064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level.
    Danielsen JM; Sylvestersen KB; Bekker-Jensen S; Szklarczyk D; Poulsen JW; Horn H; Jensen LJ; Mailand N; Nielsen ML
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.003590. PubMed ID: 21139048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins.
    Hwang S; Gou Z; Kuznetsov IB
    Bioinformatics; 2007 Mar; 23(5):634-6. PubMed ID: 17237068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation.
    Nguyen VN; Huang KY; Weng JT; Lai KR; Lee TY
    Database (Oxford); 2016; 2016():. PubMed ID: 27114492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
    Wagner SA; Beli P; Weinert BT; Schölz C; Kelstrup CD; Young C; Nielsen ML; Olsen JV; Brakebusch C; Choudhary C
    Mol Cell Proteomics; 2012 Dec; 11(12):1578-85. PubMed ID: 22790023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis.
    Na CH; Jones DR; Yang Y; Wang X; Xu Y; Peng J
    J Proteome Res; 2012 Sep; 11(9):4722-32. PubMed ID: 22871113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.