BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23626701)

  • 1. Novel fluorescein angiography-based computer-aided algorithm for assessment of retinal vessel permeability.
    Serlin Y; Tal G; Chassidim Y; Parmet Y; Tomkins O; Knyazer B; Friedman A; Levy J
    PLoS One; 2013; 8(4):e61599. PubMed ID: 23626701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-year follow-up study of blood-retinal barrier and retinal thickness alterations in patients with type 2 diabetes mellitus and mild nonproliferative diabetic retinopathy.
    Lobo CL; Bernardes RC; Figueira JP; de Abreu JR; Cunha-Vaz JG
    Arch Ophthalmol; 2004 Feb; 122(2):211-7. PubMed ID: 14769598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescein angiography-based computer-aided algorithm for assessing the retinal vasculature in diabetic retinopathy.
    Abbasnejad A; Tomkins-Netzer O; Winter A; Friedman A; Cruess A; Serlin Y; Levy J
    Eye (Lond); 2023 May; 37(7):1293-1301. PubMed ID: 35643792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of the blood-retinal barrier and retinal thickness in preclinical retinopathy in subjects with type 2 diabetes.
    Lobo CL; Bernardes RC; Cunha-Vaz JG
    Arch Ophthalmol; 2000 Oct; 118(10):1364-9. PubMed ID: 11030818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping retinal fluorescein leakage with confocal scanning laser fluorometry of the human vitreous.
    Lobo CL; Bernardes RC; Santos FJ; Cunha-Vaz JG
    Arch Ophthalmol; 1999 May; 117(5):631-7. PubMed ID: 10326960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-year follow-up of blood-retinal barrier and retinal thickness alterations in patients with type 2 diabetes mellitus and mild nonproliferative retinopathy.
    Lobo CL; Bernardes RC; de Abreu JR; Cunha-Vaz JG
    Arch Ophthalmol; 2001 Oct; 119(10):1469-74. PubMed ID: 11594946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated identification of retinal vessels using a multiscale directional contrast quantification (MDCQ) strategy.
    Zhen Y; Gu S; Meng X; Zhang X; Zheng B; Wang N; Pu J
    Med Phys; 2014 Sep; 41(9):092702. PubMed ID: 25186416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated vessel density detection in fluorescein angiography images correlates with vision in proliferative diabetic retinopathy.
    Bawany MH; Ding L; Ramchandran RS; Sharma G; Wykoff CC; Kuriyan AE
    PLoS One; 2020; 15(9):e0238958. PubMed ID: 32915904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.
    McLenachan S; Magno AL; Ramos D; Catita J; McMenamin PG; Chen FK; Rakoczy EP; Ruberte J
    Exp Eye Res; 2015 Sep; 138():6-21. PubMed ID: 26122048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes.
    Salz DA; de Carlo TE; Adhi M; Moult E; Choi W; Baumal CR; Witkin AJ; Duker JS; Fujimoto JG; Waheed NK
    JAMA Ophthalmol; 2016 Jun; 134(6):644-50. PubMed ID: 27055248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE).
    Sidhu RK; Sachdeva J; Katoch D
    Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of automated leakage quantification and microaneurysm identification utilising an analysis platform for ultra-widefield fluorescein angiography.
    Jiang A; Srivastava S; Figueiredo N; Babiuch A; Hu M; Reese J; Ehlers JP
    Br J Ophthalmol; 2020 Apr; 104(4):500-503. PubMed ID: 31320384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy.
    Durbin MK; An L; Shemonski ND; Soares M; Santos T; Lopes M; Neves C; Cunha-Vaz J
    JAMA Ophthalmol; 2017 Apr; 135(4):370-376. PubMed ID: 28301651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Issues for Ultra-Wide Field Angiography.
    Rabiolo A; De Vitis LA; Sacconi R; Carnevali A; Querques L; Bandello F; Querques G
    Dev Ophthalmol; 2017; 60():50-55. PubMed ID: 28427064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ridge-based vessel segmentation in color images of the retina.
    Staal J; Abràmoff MD; Niemeijer M; Viergever MA; van Ginneken B
    IEEE Trans Med Imaging; 2004 Apr; 23(4):501-9. PubMed ID: 15084075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy.
    Dimitrova G; Chihara E; Takahashi H; Amano H; Okazaki K
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):190-196. PubMed ID: 28114579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entoptic evaluation of diabetic retinopathy.
    Applegate RA; Bradley A; van Heuven WA; Lee BL; Garcia CA
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):783-91. PubMed ID: 9112972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated retinal imaging method for the early diagnosis of diabetic retinopathy.
    Franklin SW; Rajan SE
    Technol Health Care; 2013; 21(6):557-69. PubMed ID: 24284549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.