BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 23626718)

  • 21. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Daily wrist activity classification using a smart band.
    Nguyen ND; Truong PH; Jeong GM
    Physiol Meas; 2017 Aug; 38(9):L10-L16. PubMed ID: 28654423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Biomechanical Re-Examination of Physical Activity Measurement with Accelerometers.
    Fridolfsson J; Börjesson M; Arvidsson D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30314272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initial information prior to movement onset influences kinematics of upward arm pointing movements.
    Rousseau C; Papaxanthis C; Gaveau J; Pozzo T; White O
    J Neurophysiol; 2016 Oct; 116(4):1673-1683. PubMed ID: 27486106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting physical activity energy expenditure in manual wheelchair users.
    Nightingale TE; Walhim JP; Thompson D; Bilzon JL
    Med Sci Sports Exerc; 2014 Sep; 46(9):1849-58. PubMed ID: 25134004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip.
    Fernández-Verdejo R; Alcantara JMA; Galgani JE; Acosta FM; Migueles JH; Amaro-Gahete FJ; Labayen I; Ortega FB; Ruiz JR
    Sci Rep; 2021 Jun; 11(1):12302. PubMed ID: 34112912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task.
    Yoshioka S; Nagano A; Hay DC; Fukashiro S
    Biomed Eng Online; 2009 Oct; 8():27. PubMed ID: 19849859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of movement direction upon kinematic characteristics of vertical arm pointing movements in man.
    Papaxanthis C; Pozzo T; Stapley P
    Neurosci Lett; 1998 Sep; 253(2):103-6. PubMed ID: 9774160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimum gravity vector and vertical acceleration estimation using a tri-axial accelerometer for falls and normal activities.
    Bourke AK; O'Donovan K; Clifford A; ÓLaighin G; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7896-9. PubMed ID: 22256171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative analysis of speed profile models for wrist pointing movements.
    Vaisman L; Dipietro L; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):756-66. PubMed ID: 23232435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The temporal structure of vertical arm movements.
    Gaveau J; Papaxanthis C
    PLoS One; 2011; 6(7):e22045. PubMed ID: 21765935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon.
    Assah FK; Ekelund U; Brage S; Wright A; Mbanya JC; Wareham NJ
    Int J Epidemiol; 2011 Feb; 40(1):112-20. PubMed ID: 20529884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.
    Kim K; Song WK; Lee J; Lee HY; Park DS; Ko BW; Kim J
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):248-56. PubMed ID: 24451064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects.
    Zatsiorsky VM; Gao F; Latash ML
    Exp Brain Res; 2005 Apr; 162(3):300-8. PubMed ID: 15580485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of wrist and hip sedentary behaviour and moderate-to-vigorous physical activity raw acceleration cutpoints in older adults.
    Sanders GJ; Boddy LM; Sparks SA; Curry WB; Roe B; Kaehne A; Fairclough SJ
    J Sports Sci; 2019 Jun; 37(11):1270-1279. PubMed ID: 30558487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gravitational artifact in accelerometric measurements of tremor.
    Elble RJ
    Clin Neurophysiol; 2005 Jul; 116(7):1638-43. PubMed ID: 15905122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit.
    Hibbing PR; Lamunion SR; Kaplan AS; Crouter SE
    Med Sci Sports Exerc; 2018 May; 50(5):1093-1102. PubMed ID: 29271847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.