These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23626793)

  • 1. A high throughput screen for RGS proteins using steady state monitoring of free phosphate formation.
    Monroy CA; Mackie DI; Roman DL
    PLoS One; 2013; 8(4):e62247. PubMed ID: 23626793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Galpha(i1) rate-modifying mutations act in concert to allow receptor-independent, steady-state measurements of RGS protein activity.
    Zielinski T; Kimple AJ; Hutsell SQ; Koeff MD; Siderovski DP; Lowery RG
    J Biomol Screen; 2009 Dec; 14(10):1195-206. PubMed ID: 19820068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible inhibitors of regulators of G-protein signaling identified in a high-throughput cell-based calcium signaling assay.
    Storaska AJ; Mei JP; Wu M; Li M; Wade SM; Blazer LL; Sjögren B; Hopkins CR; Lindsley CW; Lin Z; Babcock JJ; McManus OB; Neubig RR
    Cell Signal; 2013 Dec; 25(12):2848-55. PubMed ID: 24041654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric inhibition of the regulator of G protein signaling-Galpha protein-protein interaction by CCG-4986.
    Roman DL; Blazer LL; Monroy CA; Neubig RR
    Mol Pharmacol; 2010 Sep; 78(3):360-5. PubMed ID: 20530129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor.
    Tang W; Tu Y; Nayak SK; Woodson J; Jehl M; Ross EM
    J Biol Chem; 2006 Feb; 281(8):4746-53. PubMed ID: 16407201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of small-molecule inhibitors of RGS4 using a high-throughput flow cytometry protein interaction assay.
    Roman DL; Talbot JN; Roof RA; Sunahara RK; Traynor JR; Neubig RR
    Mol Pharmacol; 2007 Jan; 71(1):169-75. PubMed ID: 17012620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating modulators of "Regulator of G-protein Signaling" (RGS) proteins.
    Bosch DE; Zielinski T; Lowery RG; Siderovski DP
    Curr Protoc Pharmacol; 2012 Mar; Chapter 2():Unit2.8. PubMed ID: 22382998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
    Siderovski DP; Willard FS
    Int J Biol Sci; 2005; 1(2):51-66. PubMed ID: 15951850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel high-throughput screen and identification of small-molecule inhibitors of the Gα-RGS17 protein-protein interaction using AlphaScreen.
    Mackie DI; Roman DL
    J Biomol Screen; 2011 Sep; 16(8):869-77. PubMed ID: 21680864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-based assays for RGS box function.
    Willard FS; Kimple RJ; Kimple AJ; Johnston CA; Siderovski DP
    Methods Enzymol; 2004; 389():56-71. PubMed ID: 15313559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay of RGS protein activity in vitro using purified components.
    Krumins AM; Gilman AG
    Methods Enzymol; 2002; 344():673-85. PubMed ID: 11771419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential contribution of GTPase activation and effector antagonism to the inhibitory effect of RGS proteins on Gq-mediated signaling in vivo.
    Anger T; Zhang W; Mende U
    J Biol Chem; 2004 Feb; 279(6):3906-15. PubMed ID: 14630933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution structure of RGS17 suggests a role for Ca
    Sieng M; Hayes MP; O'Brien JB; Andrew Fowler C; Houtman JC; Roman DL; Lyon AM
    J Biol Chem; 2019 May; 294(20):8148-8160. PubMed ID: 30940727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling.
    Tu Y; Wilkie TM
    Methods Enzymol; 2004; 389():89-105. PubMed ID: 15313561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
    Kimple AJ; Bosch DE; Giguère PM; Siderovski DP
    Pharmacol Rev; 2011 Sep; 63(3):728-49. PubMed ID: 21737532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a bimolecular luminescence complementation assay for RGS: G protein interactions in cells.
    Bodle CR; Hayes MP; O'Brien JB; Roman DL
    Anal Biochem; 2017 Apr; 522():10-17. PubMed ID: 28115169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nanomolar-potency small molecule inhibitor of regulator of G-protein signaling proteins.
    Blazer LL; Zhang H; Casey EM; Husbands SM; Neubig RR
    Biochemistry; 2011 Apr; 50(15):3181-92. PubMed ID: 21329361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha).
    Scheschonka A; Dessauer CW; Sinnarajah S; Chidiac P; Shi CS; Kehrl JH
    Mol Pharmacol; 2000 Oct; 58(4):719-28. PubMed ID: 10999941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RGS17: an emerging therapeutic target for lung and prostate cancers.
    Bodle CR; Mackie DI; Roman DL
    Future Med Chem; 2013 Jun; 5(9):995-1007. PubMed ID: 23734683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10.
    Tu Y; Popov S; Slaughter C; Ross EM
    J Biol Chem; 1999 Dec; 274(53):38260-7. PubMed ID: 10608901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.