These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23627056)

  • 1. Real-time monitoring in vitro cellular cytotoxicity of silica nanotubes using electric cell-substrate impedance sensing (ECIS).
    Tran TB; Nguyen PD; Um SH; Son SJ; Min J
    J Biomed Nanotechnol; 2013 Feb; 9(2):286-90. PubMed ID: 23627056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening.
    Tran TB; Cho S; Min J
    Biosens Bioelectron; 2013 Dec; 50():453-9. PubMed ID: 23911660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online Measurement of Real-Time Cytotoxic Responses Induced by Multi-Component Matrices, such as Natural Products, through Electric Cell-Substrate Impedance Sensing (ECIS).
    Fallarero A; Batista-González AE; Hiltunen AK; Liimatainen J; Karonen M; Vuorela PM
    Int J Mol Sci; 2015 Nov; 16(11):27044-57. PubMed ID: 26569236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS).
    Xiao C; Luong JH
    Biotechnol Prog; 2003; 19(3):1000-5. PubMed ID: 12790667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole cell impedance biosensoring devices.
    Hondroulis E; Li CZ
    Methods Mol Biol; 2012; 926():177-87. PubMed ID: 22975965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake and cytotoxicity of silica nanotubes.
    Nan A; Bai X; Son SJ; Lee SB; Ghandehari H
    Nano Lett; 2008 Aug; 8(8):2150-4. PubMed ID: 18624386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring viral-induced cell death using electric cell-substrate impedance sensing.
    Campbell CE; Laane MM; Haugarvoll E; Giaever I
    Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable impedance sensor for mammalian cell proliferation measurements.
    Zhang X; Wang W; Li F; Voiculescu I
    Lab Chip; 2017 Jun; 17(12):2054-2066. PubMed ID: 28513702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of the impact of clinical bacterial isolates on epithelial cell monolayer integrity by the electric Cell-Substrate Impedance Sensing (ECIS) method.
    Nahid MA; Campbell CE; Fong KSK; Barnhill JC; Washington MA
    J Microbiol Methods; 2020 Feb; 169():105833. PubMed ID: 31904440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS).
    Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS
    Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time electrical impedance detection of cellular activities of oral cancer cells.
    Arias LR; Perry CA; Yang L
    Biosens Bioelectron; 2010 Jun; 25(10):2225-31. PubMed ID: 20304624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.
    Müller J; Thirion C; Pfaffl MW
    Biosens Bioelectron; 2011 Jan; 26(5):2000-5. PubMed ID: 20875729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis.
    Arndt S; Seebach J; Psathaki K; Galla HJ; Wegener J
    Biosens Bioelectron; 2004 Jan; 19(6):583-94. PubMed ID: 14683642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study of silica nanoparticle-induced cytotoxicity based on real-time cell electronic sensing system.
    Yang H; Wu Q; Tang M; Liu X; Deng H; Kong L; Lu Z
    J Nanosci Nanotechnol; 2010 Jan; 10(1):561-8. PubMed ID: 20352892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology.
    Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility.
    Szulcek R; Bogaard HJ; van Nieuw Amerongen GP
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24747269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves.
    Binder ARD; Spiess AN; Pfaffl MW
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.
    Nguyen TA; Yin TI; Reyes D; Urban GA
    Anal Chem; 2013 Nov; 85(22):11068-76. PubMed ID: 24117341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.