These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate. Chen YS; Tu YC; Lai YC; Liu E; Yang YC; Kuo CC J Neurochem; 2020 Jun; 153(5):549-566. PubMed ID: 31821563 [TBL] [Abstract][Full Text] [Related]
24. 4-hydroxy-1,2,5-oxadiazol-3-yl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and molecular pharmacological characterization at ionotropic glutamate receptors of compounds related to glutamate and its homologues. Lolli ML; Giordano C; Pickering DS; Rolando B; Hansen KB; Foti A; Contreras-Sanz A; Amir A; Fruttero R; Gasco A; Nielsen B; Johansen TN J Med Chem; 2010 May; 53(10):4110-8. PubMed ID: 20408529 [TBL] [Abstract][Full Text] [Related]
25. Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Hansen KB; Bräuner-Osborne H; Egebjerg J Comb Chem High Throughput Screen; 2008 May; 11(4):304-15. PubMed ID: 18473740 [TBL] [Abstract][Full Text] [Related]
26. High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Sibarov DA; Giniatullin R; Antonov SM Biochem Biophys Res Commun; 2018 Nov; 506(3):648-652. PubMed ID: 30454701 [TBL] [Abstract][Full Text] [Related]
27. Functional characterization of human N-methyl-D-aspartate subtype 1A/2D receptors. Hess SD; Daggett LP; Deal C; Lu CC; Johnson EC; Veliçelebi G J Neurochem; 1998 Mar; 70(3):1269-79. PubMed ID: 9489750 [TBL] [Abstract][Full Text] [Related]
32. Influence of a threonine residue in the S2 ligand binding domain in determining agonist potency and deactivation rate of recombinant NR1a/NR2D NMDA receptors. Chen PE; Johnston AR; Mok MH; Schoepfer R; Wyllie DJ J Physiol; 2004 Jul; 558(Pt 1):45-58. PubMed ID: 15107472 [TBL] [Abstract][Full Text] [Related]
33. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons. Gong XQ; Frandsen A; Lu WY; Wan Y; Zabek RL; Pickering DS; Bai D Br J Pharmacol; 2005 Jun; 145(4):449-59. PubMed ID: 15806114 [TBL] [Abstract][Full Text] [Related]
34. Piperazine-2,3-dicarboxylic acid derivatives as dual antagonists of NMDA and GluK1-containing kainate receptors. Irvine MW; Costa BM; Dlaboga D; Culley GR; Hulse R; Scholefield CL; Atlason P; Fang G; Eaves R; Morley R; Mayo-Martin MB; Amici M; Bortolotto ZA; Donaldson L; Collingridge GL; Molnár E; Monaghan DT; Jane DE J Med Chem; 2012 Jan; 55(1):327-41. PubMed ID: 22111545 [TBL] [Abstract][Full Text] [Related]
35. In vitro pharmacology of ACEA-1021 and ACEA-1031: systemically active quinoxalinediones with high affinity and selectivity for N-methyl-D-aspartate receptor glycine sites. Woodward RM; Huettner JE; Guastella J; Keana JF; Weber E Mol Pharmacol; 1995 Mar; 47(3):568-81. PubMed ID: 7700254 [TBL] [Abstract][Full Text] [Related]
36. Subtype-selective antagonism of N-methyl-D-aspartate receptors by felbamate: insights into the mechanism of action. Kleckner NW; Glazewski JC; Chen CC; Moscrip TD J Pharmacol Exp Ther; 1999 May; 289(2):886-94. PubMed ID: 10215667 [TBL] [Abstract][Full Text] [Related]
37. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women. Bhandage AK; Jin Z; Hellgren C; Korol SV; Nowak K; Williamsson L; Sundström-Poromaa I; Birnir B J Neuroimmunol; 2017 Apr; 305():51-58. PubMed ID: 28284346 [TBL] [Abstract][Full Text] [Related]