These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23627350)

  • 1. Quantum stochastic dynamics in the presence of a time-periodic rapidly oscillating potential: nonadiabatic escape rate.
    Shit A; Chattopadhyay S; Chaudhuri JR
    J Phys Chem A; 2013 Sep; 117(36):8576-90. PubMed ID: 23627350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escape rate for a quantum particle moving in a time-periodic rapidly oscillating potential: a time-independent approach.
    Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051102. PubMed ID: 23004698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling activated processes of nonadiabatically, periodically driven dynamical systems: a multiple scale perturbation approach.
    Shit A; Chattopadhyay S; Ray Chaudhuri J
    J Chem Phys; 2012 Jun; 136(23):234506. PubMed ID: 22779605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time independent description of rapidly oscillating potentials.
    Rahav S; Gilary I; Fishman S
    Phys Rev Lett; 2003 Sep; 91(11):110404. PubMed ID: 14525408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental aspects of quantum Brownian motion.
    Hänggi P; Ingold GL
    Chaos; 2005 Jun; 15(2):26105. PubMed ID: 16035907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective quantum Brownian dynamics in presence of a rapidly oscillating space-dependent time-periodic field.
    Shit A; Chattopadhyay S; Chaudhuri JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):060101. PubMed ID: 21797289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Metastability by Dissipation and Driving in an Asymmetric Bistable Quantum System.
    Spagnolo B; Carollo A; Valenti D
    Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-independent description of rapidly driven systems in the presence of friction: multiple scale perturbation approach.
    Shit A; Chattopadhyay S; Chaudhuri JR
    Chaos; 2012 Mar; 22(1):013131. PubMed ID: 22463007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Ginzburg-Landau-type approach to quantum dissipation.
    López JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026110. PubMed ID: 14995523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
    Larsen RE; Bedard-Hearn MJ; Schwartz BJ
    J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistate electron transfer dynamics in the condensed phase: exact calculations from the reduced hierarchy equations of motion approach.
    Tanaka M; Tanimura Y
    J Chem Phys; 2010 Jun; 132(21):214502. PubMed ID: 20528026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stochastic approach to open quantum systems.
    Biele R; D'Agosta R
    J Phys Condens Matter; 2012 Jul; 24(27):273201. PubMed ID: 22713734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum features of Brownian motors and stochastic resonance.
    Reimann P; Hanggi P
    Chaos; 1998 Sep; 8(3):629-642. PubMed ID: 12779767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanics of dissipative systems.
    Yan Y; Xu R
    Annu Rev Phys Chem; 2005; 56():187-219. PubMed ID: 15796700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic dynamics near metal surfaces under Floquet engineering: Floquet electronic friction vs Floquet surface hopping.
    Wang Y; Dou W
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37655774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.
    Kelly A; Brackbill N; Markland TE
    J Chem Phys; 2015 Mar; 142(9):094110. PubMed ID: 25747064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.
    Nelson T; Fernandez-Alberti S; Chernyak V; Roitberg AE; Tretiak S
    J Phys Chem B; 2011 May; 115(18):5402-14. PubMed ID: 21218841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory effects in nonadiabatic molecular dynamics at metal surfaces.
    Olsen T; Schiøtz J
    J Chem Phys; 2010 Oct; 133(13):134109. PubMed ID: 20942525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.