BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23627437)

  • 1. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments.
    Yao XQ; Kimura N; Murakami S; Takada S
    J Am Chem Soc; 2013 May; 135(20):7474-85. PubMed ID: 23627437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance.
    Mowla R; Wang Y; Ma S; Venter H
    Biochim Biophys Acta Biomembr; 2018 Apr; 1860(4):878-886. PubMed ID: 28890187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.
    Murakami S; Nakashima R; Yamashita E; Matsumoto T; Yamaguchi A
    Nature; 2006 Sep; 443(7108):173-9. PubMed ID: 16915237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations.
    Feng Z; Hou T; Li Y
    Mol Biosyst; 2012 Oct; 8(10):2699-709. PubMed ID: 22825052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2007 Dec; 189(23):8677-84. PubMed ID: 17905989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a conserved residue R780 in Escherichia coli multidrug transporter AcrB.
    Yu L; Lu W; Ye C; Wang Z; Zhong M; Chai Q; Sheetz M; Wei Y
    Biochemistry; 2013 Oct; 52(39):6790-6. PubMed ID: 24007302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB.
    Bohnert JA; Schuster S; Seeger MA; Fähnrich E; Pos KM; Kern WV
    J Bacteriol; 2008 Dec; 190(24):8225-9. PubMed ID: 18849422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays.
    Kinana AD; Vargiu AV; Nikaido H
    Biochem Biophys Res Commun; 2016 Nov; 480(4):552-557. PubMed ID: 27789287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling.
    Seeger MA; von Ballmoos C; Verrey F; Pos KM
    Biochemistry; 2009 Jun; 48(25):5801-12. PubMed ID: 19425588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate path in the AcrB multidrug efflux pump of Escherichia coli.
    Husain F; Nikaido H
    Mol Microbiol; 2010 Oct; 78(2):320-30. PubMed ID: 20804453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the function of a protruding loop in AcrB trimerization.
    Fang J; Yu L; Wu M; Wei Y
    J Biomol Struct Dyn; 2013 Apr; 31(4):385-92. PubMed ID: 22877148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives.
    Sjuts H; Vargiu AV; Kwasny SM; Nguyen ST; Kim HS; Ding X; Ornik AR; Ruggerone P; Bowlin TL; Nikaido H; Pos KM; Opperman TJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3509-14. PubMed ID: 26976576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations.
    Vargiu AV; Collu F; Schulz R; Pos KM; Zacharias M; Kleinekathöfer U; Ruggerone P
    J Am Chem Soc; 2011 Jul; 133(28):10704-7. PubMed ID: 21707050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB.
    Seeger MA; von Ballmoos C; Eicher T; Brandstätter L; Verrey F; Diederichs K; Pos KM
    Nat Struct Mol Biol; 2008 Feb; 15(2):199-205. PubMed ID: 18223659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance.
    Wehmeier C; Schuster S; Fähnrich E; Kern WV; Bohnert JA
    Antimicrob Agents Chemother; 2009 Jan; 53(1):329-30. PubMed ID: 18936189
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism.
    Seeger MA; Schiefner A; Eicher T; Verrey F; Diederichs K; Pos KM
    Science; 2006 Sep; 313(5791):1295-8. PubMed ID: 16946072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining Ligand Path Through a Major Drug Transporter, AcrB, in Escherichia coli.
    Husain F; Nikaido H
    Methods Mol Biol; 2018; 1700():167-175. PubMed ID: 29177831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli.
    Husain F; Bikhchandani M; Nikaido H
    J Bacteriol; 2011 Oct; 193(20):5847-9. PubMed ID: 21856849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking.
    Tamura N; Murakami S; Oyama Y; Ishiguro M; Yamaguchi A
    Biochemistry; 2005 Aug; 44(33):11115-21. PubMed ID: 16101295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition.
    Zwama M; Yamasaki S; Nakashima R; Sakurai K; Nishino K; Yamaguchi A
    Nat Commun; 2018 Jan; 9(1):124. PubMed ID: 29317622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.