These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23627437)

  • 41. Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB.
    Kinana AD; Vargiu AV; Nikaido H
    Biochemistry; 2013 Nov; 52(46):8342-51. PubMed ID: 24205856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Interactions of Cephalosporins with the Deep Binding Pocket of the RND Transporter AcrB.
    Atzori A; Malloci G; Prajapati JD; Basciu A; Bosin A; Kleinekathöfer U; Dreier J; Vargiu AV; Ruggerone P
    J Phys Chem B; 2019 Jun; 123(22):4625-4635. PubMed ID: 31070373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol.
    Fisher MA; Boyarskiy S; Yamada MR; Kong N; Bauer S; Tullman-Ercek D
    ACS Synth Biol; 2014 Jan; 3(1):30-40. PubMed ID: 23991711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of water during the extrusion of substrates by the efflux transporter AcrB.
    Schulz R; Vargiu AV; Ruggerone P; Kleinekathöfer U
    J Phys Chem B; 2011 Jun; 115(25):8278-87. PubMed ID: 21657235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of the trimeric AcrB transporter protein inferred from a B-factor analysis of the crystal structure.
    Lu WC; Wang CZ; Yu EW; Ho KM
    Proteins; 2006 Jan; 62(1):152-8. PubMed ID: 16288462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel packing arrangement of AcrB in the lipid bilayer membrane.
    Ly K; Bartho JD; Eicher T; Pos KM; Mitra AK
    FEBS Lett; 2014 Dec; 588(24):4776-83. PubMed ID: 25451234
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New insights into the structural and functional involvement of the gate loop in AcrB export activity.
    Ababou A
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):242-253. PubMed ID: 29126836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multidrug efflux transporter, AcrB--the pumping mechanism.
    Murakami S
    Curr Opin Struct Biol; 2008 Aug; 18(4):459-65. PubMed ID: 18644451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into the Inhibitory Mechanism of D13-9001 to the Multidrug Transporter AcrB through Molecular Dynamics Simulations.
    Zuo Z; Weng J; Wang W
    J Phys Chem B; 2016 Mar; 120(9):2145-54. PubMed ID: 26900716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystallographic Analysis of Drug and Inhibitor-Binding Structure of RND-Type Multidrug Exporter AcrB in Physiologically Relevant Asymmetric Crystals.
    Nakashima R; Sakurai K; Yamaguchi A
    Methods Mol Biol; 2018; 1700():25-36. PubMed ID: 29177823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB.
    Fischer N; Kandt C
    Proteins; 2011 Oct; 79(10):2871-85. PubMed ID: 21905112
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations.
    Vargiu AV; Nikaido H
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20637-42. PubMed ID: 23175790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump.
    Kinana AD; Vargiu AV; May T; Nikaido H
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1405-10. PubMed ID: 26787896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Statistical thermodynamics for functionally rotating mechanism of the multidrug efflux transporter AcrB.
    Mishima H; Oshima H; Yasuda S; Kinoshita M
    J Phys Chem B; 2015 Feb; 119(8):3423-33. PubMed ID: 25633129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex.
    Wang B; Weng J; Fan K; Wang W
    Proteins; 2011 Oct; 79(10):2936-45. PubMed ID: 21905116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins.
    Hernandez-Mendoza A; Quinto C; Segovia L; Perez-Rueda E
    Comput Biol Chem; 2007 Apr; 31(2):115-23. PubMed ID: 17416336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coarse-grained simulations of conformational changes in the multidrug efflux transporter AcrB.
    Jewel Y; Liu J; Dutta P
    Mol Biosyst; 2017 Sep; 13(10):2006-2014. PubMed ID: 28770910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli.
    Takatsuka Y; Chen C; Nikaido H
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6559-65. PubMed ID: 20212112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional rotation of the transporter AcrB: insights into drug extrusion from simulations.
    Schulz R; Vargiu AV; Collu F; Kleinekathöfer U; Ruggerone P
    PLoS Comput Biol; 2010 Jun; 6(6):e1000806. PubMed ID: 20548943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2006 Oct; 188(20):7284-9. PubMed ID: 17015667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.