These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23627593)

  • 21. Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize.
    Chuang WP; Ray S; Acevedo FE; Peiffer M; Felton GW; Luthe DS
    Mol Plant Microbe Interact; 2014 May; 27(5):461-70. PubMed ID: 24329171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence.
    Orsucci M; Audiot P; Dorkeld F; Pommier A; Vabre M; Gschloessl B; Rialle S; Severac D; Bourguet D; Streiff R
    BMC Genomics; 2018 Apr; 19(1):265. PubMed ID: 29669517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect-plant interactions.
    Musser RO; Farmer E; Peiffer M; Williams SA; Felton GW
    J Chem Ecol; 2006 May; 32(5):981-92. PubMed ID: 16739018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulsed odors from maize or spinach elicit orientation in European corn borer neonate larvae.
    Piesik D; Rochat D; van der Pers J; Marion-Poll F
    J Chem Ecol; 2009 Sep; 35(9):1032-42. PubMed ID: 19787404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum.
    Kundu A; Mishra S; Vadassery J
    Planta; 2018 Oct; 248(4):981-997. PubMed ID: 29987372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QTL mapping for European corn borer resistance ( Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize ( Zea mays L.) germplasm.
    Papst C; Bohn M; Utz HF; Melchinger AE; Klein D; Eder J
    Theor Appl Genet; 2004 May; 108(8):1545-54. PubMed ID: 15014876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities.
    Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR
    BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses.
    Wu S; Peiffer M; Luthe DS; Felton GW
    PLoS One; 2012; 7(7):e41947. PubMed ID: 22848670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Jasmonates mediate plant defense responses to
    Al-Zahrani W; Bafeel SO; El-Zohri M
    Plant Signal Behav; 2020 May; 15(5):1746898. PubMed ID: 32290765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defensive changes in maize leaves induced by feeding of Mediterranean corn borer larvae.
    Santiago R; Cao A; Butrón A; López-Malvar A; Rodríguez VM; Sandoya GV; Malvar RA
    BMC Plant Biol; 2017 Feb; 17(1):44. PubMed ID: 28202014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants.
    Musser RO; Cipollini DF; Hum-Musser SM; Williams SA; Brown JK; Felton GW
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):128-37. PubMed ID: 15660363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni).
    Rivera-Vega LJ; Galbraith DA; Grozinger CM; Felton GW
    PLoS One; 2017; 12(8):e0182636. PubMed ID: 28792546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato.
    Paudel S; Lin PA; Foolad MR; Ali JG; Rajotte EG; Felton GW
    J Chem Ecol; 2019 Aug; 45(8):693-707. PubMed ID: 31367970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plants eavesdrop on cues produced by snails and induce costly defenses that affect insect herbivores.
    Orrock JL; Connolly BM; Choi WG; Guiden PW; Swanson SJ; Gilroy S
    Oecologia; 2018 Mar; 186(3):703-710. PubMed ID: 29340758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diverted secondary metabolism and improved resistance to European corn borer (Ostrinia nubilalis) in maize (Zea mays L.) transformed with wheat oxalate oxidase.
    Mao J; Burt AJ; Ramputh AI; Simmonds J; Cass L; Hubbard K; Miller S; Altosaar I; Arnason JT
    J Agric Food Chem; 2007 Apr; 55(7):2582-9. PubMed ID: 17348672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Helicoverpa zea-Associated Gut Bacteria as Drivers in Shaping Plant Anti-herbivore Defense in Tomato.
    Pan Q; Shikano I; Liu TX; Felton GW
    Microb Ecol; 2023 Oct; 86(3):2173-2182. PubMed ID: 37154919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize.
    Shivaji R; Camas A; Ankala A; Engelberth J; Tumlinson JH; Williams WP; Wilkinson JR; Luthe DS
    J Chem Ecol; 2010 Feb; 36(2):179-91. PubMed ID: 20148356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum).
    Tian D; Tooker J; Peiffer M; Chung SH; Felton GW
    Planta; 2012 Oct; 236(4):1053-66. PubMed ID: 22552638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The host plant as a factor in the synthesis and secretion of salivary glucose oxidase in larval Helicoverpa zea.
    Peiffer M; Felton GW
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):106-13. PubMed ID: 15660359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens.
    Mason CJ; Peiffer M; Hoover K; Felton G
    J Chem Ecol; 2023 Jun; 49(5-6):313-324. PubMed ID: 36964896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.