These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Nurkiewicz TR; Boegehold MA Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1550-6. PubMed ID: 17138723 [TBL] [Abstract][Full Text] [Related]
4. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Durand MJ; Raffai G; Weinberg BD; Lombard JH Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1024-33. PubMed ID: 20656887 [TBL] [Abstract][Full Text] [Related]
5. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase. Huang A; Yan C; Suematsu N; Cuevas A; Yang YM; Kertowidjojo E; Hintze TH; Kaley G; Sun D Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1476-83. PubMed ID: 20833958 [TBL] [Abstract][Full Text] [Related]
6. Arteriolar diameter and spontaneous vasomotion: importance of potassium channels and nitric oxide. de Souza Md; Bouskela E Microvasc Res; 2013 Nov; 90():121-7. PubMed ID: 23948594 [TBL] [Abstract][Full Text] [Related]
7. Effects of cromakalim and glibenclamide on arteriolar and venular diameters and macromolecular leakage in the microcirculation during ischemia/reperfusion. Simões C; Svensjö E; Bouskela E J Cardiovasc Pharmacol; 2002 Mar; 39(3):340-6. PubMed ID: 11862112 [TBL] [Abstract][Full Text] [Related]
8. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch. Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224 [TBL] [Abstract][Full Text] [Related]
9. Arteriolar tone is determined by activity of ATP-sensitive potassium channels. Jackson WF Am J Physiol; 1993 Nov; 265(5 Pt 2):H1797-803. PubMed ID: 8238593 [TBL] [Abstract][Full Text] [Related]
10. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression. Durand MJ; Lombard JH Am J Hypertens; 2013 Jun; 26(6):739-47. PubMed ID: 23443725 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome P-450 omega-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation. Lombard JH; Kunert MP; Roman RJ; Falck JR; Harder DR; Jackson WF Am J Physiol; 1999 Feb; 276(2):H503-8. PubMed ID: 9950851 [TBL] [Abstract][Full Text] [Related]
12. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation. Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide does not mediate arteriolar oxygen reactivity. Jackson WF Microcirc Endothelium Lymphatics; 1991; 7(4-6):199-215. PubMed ID: 1815105 [TBL] [Abstract][Full Text] [Related]
14. Inhibition by SR 140333 of NK1 tachykinin receptor-evoked, nitric oxide-dependent vasodilatation in the hamster cheek pouch microvasculature in vivo. Hall JM; Brain SD Br J Pharmacol; 1994 Oct; 113(2):522-6. PubMed ID: 7530573 [TBL] [Abstract][Full Text] [Related]
15. High Salt Enhances Reactive Oxygen Species and Angiotensin II Contractions of Glomerular Afferent Arterioles From Mice With Reduced Renal Mass. Li L; Lai EY; Luo Z; Solis G; Mendonca M; Griendling KK; Wellstein A; Welch WJ; Wilcox CS Hypertension; 2018 Nov; 72(5):1208-1216. PubMed ID: 30354808 [TBL] [Abstract][Full Text] [Related]