These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23628292)

  • 1. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles.
    Priestley JR; Buelow MW; McEwen ST; Weinberg BD; Delaney M; Balus SF; Hoeppner C; Dondlinger L; Lombard JH
    Microvasc Res; 2013 Sep; 89():134-45. PubMed ID: 23628292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AT1 receptors prevent salt-induced vascular dysfunction in isolated middle cerebral arteries of 2 kidney-1 clip hypertensive rats.
    Beyer AM; Fredrich K; Lombard JH
    Am J Hypertens; 2013 Dec; 26(12):1398-404. PubMed ID: 23934707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1550-6. PubMed ID: 17138723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries.
    Durand MJ; Raffai G; Weinberg BD; Lombard JH
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1024-33. PubMed ID: 20656887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase.
    Huang A; Yan C; Suematsu N; Cuevas A; Yang YM; Kertowidjojo E; Hintze TH; Kaley G; Sun D
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1476-83. PubMed ID: 20833958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arteriolar diameter and spontaneous vasomotion: importance of potassium channels and nitric oxide.
    de Souza Md; Bouskela E
    Microvasc Res; 2013 Nov; 90():121-7. PubMed ID: 23948594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cromakalim and glibenclamide on arteriolar and venular diameters and macromolecular leakage in the microcirculation during ischemia/reperfusion.
    Simões C; Svensjö E; Bouskela E
    J Cardiovasc Pharmacol; 2002 Mar; 39(3):340-6. PubMed ID: 11862112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arteriolar tone is determined by activity of ATP-sensitive potassium channels.
    Jackson WF
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1797-803. PubMed ID: 8238593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression.
    Durand MJ; Lombard JH
    Am J Hypertens; 2013 Jun; 26(6):739-47. PubMed ID: 23443725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P-450 omega-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation.
    Lombard JH; Kunert MP; Roman RJ; Falck JR; Harder DR; Jackson WF
    Am J Physiol; 1999 Feb; 276(2):H503-8. PubMed ID: 9950851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation.
    Verbeuren TJ; Vallez MO; Lavielle G; Bouskela E
    Br J Pharmacol; 1997 Nov; 122(5):859-66. PubMed ID: 9384501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide does not mediate arteriolar oxygen reactivity.
    Jackson WF
    Microcirc Endothelium Lymphatics; 1991; 7(4-6):199-215. PubMed ID: 1815105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition by SR 140333 of NK1 tachykinin receptor-evoked, nitric oxide-dependent vasodilatation in the hamster cheek pouch microvasculature in vivo.
    Hall JM; Brain SD
    Br J Pharmacol; 1994 Oct; 113(2):522-6. PubMed ID: 7530573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Salt Enhances Reactive Oxygen Species and Angiotensin II Contractions of Glomerular Afferent Arterioles From Mice With Reduced Renal Mass.
    Li L; Lai EY; Luo Z; Solis G; Mendonca M; Griendling KK; Wellstein A; Welch WJ; Wilcox CS
    Hypertension; 2018 Nov; 72(5):1208-1216. PubMed ID: 30354808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic exposure to nicotine alters endothelium-dependent arteriolar dilatation: effect of superoxide dismutase.
    Mayhan WG; Sharpe GM
    J Appl Physiol (1985); 1999 Apr; 86(4):1126-34. PubMed ID: 10194193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of cytochrome P-450 omega-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension.
    Frisbee JC; Falck JR; Lombard JH
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1517-26. PubMed ID: 10775129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amelioration of salt-induced vascular dysfunction in mesenteric arteries of Dahl salt-sensitive rats by missense mutation of extracellular superoxide dismutase.
    Beyer AM; Raffai G; Weinberg BD; Fredrich K; Rodgers MS; Geurts AM; Jacob HJ; Dwinell MR; Lombard JH
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(3):H339-47. PubMed ID: 24322611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function.
    Zhang C; Hein TW; Wang W; Kuo L
    Circ Res; 2003 Feb; 92(3):322-9. PubMed ID: 12595345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.