These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 236284)

  • 61. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse.
    Aran N
    Int J Food Microbiol; 2001 Jan; 63(1-2):117-23. PubMed ID: 11205943
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969.
    Banawas S; Paredes-Sabja D; Setlow P; Sarker MR
    Microbiology (Reading); 2016 Nov; 162(11):1972-1983. PubMed ID: 27692042
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recovery of heated Clostridium perfringens type A spores on selective media.
    Barach JT; Adams DM; Speck ML
    Appl Microbiol; 1974 Nov; 28(5):793-7. PubMed ID: 4374120
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Selection and application of natural antimicrobials to control Clostridium perfringens in sous-vide chicken breasts inhibition of C. perfringens in sous-vide chicken.
    Smith CJ; Olszewska MA; Diez-Gonzalez F
    Int J Food Microbiol; 2021 Jun; 347():109193. PubMed ID: 33836443
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A technique for producing large yields of vegetative cell-free refractile Clostridium perfringens spores of unaltered heat resistance.
    Goodenough ER; Solberg M
    Appl Microbiol; 1972 Feb; 23(2):429-30. PubMed ID: 4336017
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sporulation and enterotoxin production by Clostridium perfringens type A under conditions of controlled pH and temperature.
    Labbe RG; Duncan CL
    Can J Microbiol; 1974 Nov; 20(11):1493-501. PubMed ID: 4373153
    [No Abstract]   [Full Text] [Related]  

  • 67. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices.
    Zhu Y; Zhang J; Li M; Ren H; Zhu C; Yan L; Zhao G; Zhang Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 May; 232():117997. PubMed ID: 32062401
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental effects of hyperbaric oxgen on selected clostridial species. I. In-vitro studies.
    Hill GB; Osterhout S
    J Infect Dis; 1972 Jan; 125(1):17-25. PubMed ID: 4332847
    [No Abstract]   [Full Text] [Related]  

  • 69. Clostridium perfringens. I. Sporulation in a biphasic glucose-ion-exchange resin medium.
    Clifford WJ; Anellis A
    Appl Microbiol; 1971 Nov; 22(5):856-61. PubMed ID: 4332043
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Radiation resistance of spores of some Clostridium perfringens strains.
    Clifford WJ; Anellis A
    Appl Microbiol; 1975 Jun; 29(6):861-3. PubMed ID: 168810
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effect of carbohydrates on the sporogenesis of Clostridium perfringens and Bacillus anthracis.
    Volkova VP; Verner OM; Sinyak KM
    J Hyg Epidemiol Microbiol Immunol; 1988; 32(4):447-56. PubMed ID: 2906076
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of metal ions on growth and sporulation of Clostridium perfringens in a synthetic medium.
    Lee KY; Juang TC; Lee KC
    Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi; 1978 Jun; 11(2):50-61. PubMed ID: 215387
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The influence of high concentrations of carbon dioxide on the germination of bacterial spores.
    Enfors SO; Molin G
    J Appl Bacteriol; 1978 Oct; 45(2):279-85. PubMed ID: 31348
    [No Abstract]   [Full Text] [Related]  

  • 74. Comparison of procedures for extracting transfer RNA from spores of Bacillus.
    Vold B; Minatogawa S
    Arch Biochem Biophys; 1972 Mar; 149(1):62-8. PubMed ID: 4622780
    [No Abstract]   [Full Text] [Related]  

  • 75. Exogenous lysozyme influences Clostridium perfringens colonization and intestinal barrier function in broiler chickens.
    Liu D; Guo Y; Wang Z; Yuan J
    Avian Pathol; 2010 Feb; 39(1):17-24. PubMed ID: 20390532
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spoilage of an acid food product by Clostridium perfringens, C. barati and C. butyricum.
    de Jong J
    Int J Food Microbiol; 1989 May; 8(2):121-32. PubMed ID: 2561952
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood-borne isolates.
    Udompijitkul P; Paredes-Sabja D; Sarker MR
    J Food Sci; 2012 Jan; 77(1):M51-6. PubMed ID: 22132724
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.
    Xiao Y; van Hijum SA; Abee T; Wells-Bennik MH
    PLoS One; 2015; 10(5):e0127036. PubMed ID: 25978838
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Use of calcium, potassium, and sodium lactates to control germination and outgrowth of Clostridium perfringens spores during chilling of injected pork.
    Reddy Velugoti P; Rajagopal L; Juneja V; Thippareddi H
    Food Microbiol; 2007; 24(7-8):687-94. PubMed ID: 17613365
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Public health importance of Clostridium perfringens.
    Genigeorgis C
    J Am Vet Med Assoc; 1975 Nov; 167(9):821-7. PubMed ID: 241737
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.