BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23628646)

  • 1. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.
    Damte D; Suh JW; Lee SJ; Yohannes SB; Hossain MA; Park SC
    Genomics; 2013 Jul; 102(1):47-56. PubMed ID: 23628646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets.
    Butt AM; Tahir S; Nasrullah I; Idrees M; Lu J; Tong Y
    Infect Genet Evol; 2012 Jan; 12(1):53-62. PubMed ID: 22057004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics study for identification of drug and vaccine targets in Vibrio cholerae: MurA ligase as a case study.
    Chawley P; Samal HB; Prava J; Suar M; Mahapatra RK
    Genomics; 2014 Jan; 103(1):83-93. PubMed ID: 24368230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Birhanu BT; Lee SJ; Park NH; Song JB; Park SC
    J Vet Sci; 2018 Mar; 19(2):188-199. PubMed ID: 29032659
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K
    Comput Biol Chem; 2014 Feb; 48():55-63. PubMed ID: 24361957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.
    Ghosh S; Prava J; Samal HB; Suar M; Mahapatra RK
    J Microbiol Methods; 2014 Jun; 101():1-8. PubMed ID: 24685600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico identification of putative drug targets from different metabolic pathways of Aeromonas hydrophila.
    Sharma V; Gupta P; Dixit A
    In Silico Biol; 2008; 8(3-4):331-8. PubMed ID: 19032165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics study of Salmonella Typhimurium LT2 for the identification of putative therapeutic candidates.
    Samal HB; Prava J; Suar M; Mahapatra RK
    J Theor Biol; 2015 Mar; 369():67-79. PubMed ID: 25637765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and purification of recombinant proteins of Mycoplasma hyopneumoniae expressed in Escherichia coli.
    Simionatto S; Marchioro SB; Galli V; Hartwig DD; Carlessi RM; Munari FM; Laurino JP; Conceição FR; Dellagostin OA
    Protein Expr Purif; 2010 Feb; 69(2):132-6. PubMed ID: 19747547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic survey of the pathogenic Mycoplasma hyopneumoniae strain 7448 and identification of novel post-translationally modified and antigenic proteins.
    Pinto PM; Chemale G; de Castro LA; Costa AP; Kich JD; Vainstein MH; Zaha A; Ferreira HB
    Vet Microbiol; 2007 Mar; 121(1-2):83-93. PubMed ID: 17182197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteogenomic mapping of Mycoplasma hyopneumoniae virulent strain 232.
    Pendarvis K; Padula MP; Tacchi JL; Petersen AC; Djordjevic SP; Burgess SC; Minion FC
    BMC Genomics; 2014 Jul; 15(1):576. PubMed ID: 25005615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of surface proteins from the pathogenic Mycoplasma hyopneumoniae strain 7448 using a biotin cell surface labeling approach.
    Reolon LA; Martello CL; Schrank IS; Ferreira HB
    PLoS One; 2014; 9(11):e112596. PubMed ID: 25386928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis.
    Minion FC; Lefkowitz EJ; Madsen ML; Cleary BJ; Swartzell SM; Mahairas GG
    J Bacteriol; 2004 Nov; 186(21):7123-33. PubMed ID: 15489423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based functional inference of hypothetical proteins from Mycoplasma hyopneumoniae.
    da Fonsêca MM; Zaha A; Caffarena ER; Vasconcelos AT
    J Mol Model; 2012 May; 18(5):1917-25. PubMed ID: 21870198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae.
    Barh D; Kumar A
    In Silico Biol; 2009; 9(4):225-31. PubMed ID: 20109152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study.
    Mehla K; Ramana J
    OMICS; 2015 Jul; 19(7):393-406. PubMed ID: 26061459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.
    Rahman A; Noore S; Hasan A; Ullah R; Rahman H; Hossain A; Ali Y; Islam S
    Comput Biol Chem; 2014 Oct; 52():66-72. PubMed ID: 25254941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico approach.
    Mondal SI; Ferdous S; Jewel NA; Akter A; Mahmud Z; Islam MM; Afrin T; Karim N
    Adv Appl Bioinform Chem; 2015; 8():49-63. PubMed ID: 26677339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains.
    de Castro LA; Rodrigues Pedroso T; Kuchiishi SS; Ramenzoni M; Kich JD; Zaha A; Henning Vainstein M; Bunselmeyer Ferreira H
    Vet Microbiol; 2006 Sep; 116(4):258-69. PubMed ID: 16730926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.