BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23628782)

  • 1. The physiology and biomechanics of upper-body repeated sprints in ice sledge hockey.
    Sandbakk Ø; Spencer M; Ettema G; Bucher Sandbakk S; Skovereng K; Welde B
    Int J Sports Physiol Perform; 2014 Jan; 9(1):77-84. PubMed ID: 23628782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between upper-body strength, power, and sprint performance in ice sledge hockey.
    Skovereng K; Ettema G; Welde B; Sandbakk Ø
    J Strength Cond Res; 2013 Dec; 27(12):3461-6. PubMed ID: 23478478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory Determinants of Repeated-Sprint and Sport-Specific-Technique Ability in World-Class Ice Sledge Hockey Players.
    Baumgart JK; Sandbakk Ø
    Int J Sports Physiol Perform; 2016 Mar; 11(2):182-90. PubMed ID: 26182436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power, fatigue, and recovery changes in national collegiate athletic association division I hockey players across a competitive season.
    Laurent CM; Fullenkamp AM; Morgan AL; Fischer DA
    J Strength Cond Res; 2014 Dec; 28(12):3338-45. PubMed ID: 24910956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiological responses to repeated upper-body sprint exercise in highly trained athletes.
    Sandbakk Ø; Skålvik TF; Spencer M; van Beekvelt M; Welde B; Hegge AM; Gjøvaag T; Ettema G
    Eur J Appl Physiol; 2015 Jun; 115(6):1381-91. PubMed ID: 25677383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of heavy upper-body strength training on ice sledge hockey sprint abilities in world class players.
    Sandbakk Ø; Hansen M; Ettema G; Rønnestad B
    Hum Mov Sci; 2014 Dec; 38():251-61. PubMed ID: 25457423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related differences in repeated-sprint ability in highly trained youth football players.
    Mujika I; Spencer M; Santisteban J; Goiriena JJ; Bishop D
    J Sports Sci; 2009 Dec; 27(14):1581-90. PubMed ID: 19967589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Fatigue in Passive Versus Active Recovery: An Examination of Repeated-Change-of-Direction Sprints in Basketball Players.
    Madueno MC; Dalbo VJ; Guy JH; Giamarelos KE; Spiteri T; Scanlan AT
    Int J Sports Physiol Perform; 2018 Sep; 13(8):1034-1041. PubMed ID: 29466079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ischemic preconditioning on repeated sprint ability in team sport athletes.
    Gibson N; Mahony B; Tracey C; Fawkner S; Murray A
    J Sports Sci; 2015; 33(11):1182-8. PubMed ID: 25517761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in acute translational repressor 4E-BP1 activity and sprint performance in response to repeated-sprint exercise in team sport athletes.
    Dent JR; Edge JA; Hawke E; McMahon C; Mündel T
    J Sci Med Sport; 2015 Nov; 18(6):730-6. PubMed ID: 25455955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex training in ice hockey: the effects of a heavy resisted sprint on subsequent ice-hockey sprint performance.
    Matthews MJ; Comfort P; Crebin R
    J Strength Cond Res; 2010 Nov; 24(11):2883-7. PubMed ID: 20940636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity.
    Spencer M; Lawrence S; Rechichi C; Bishop D; Dawson B; Goodman C
    J Sports Sci; 2004 Sep; 22(9):843-50. PubMed ID: 15513278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac autonomic responses to repeated shuttle sprints.
    Nakamura FY; Soares-Caldeira LF; Laursen PB; Polito MD; Leme LC; Buchheit M
    Int J Sports Med; 2009 Nov; 30(11):808-13. PubMed ID: 19685413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of an official match on repeated sprint ability in junior basketball players.
    Caprino D; Clarke ND; Delextrat A
    J Sports Sci; 2012; 30(11):1165-73. PubMed ID: 22697579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of repeated-sprint ability in elite female hockey players.
    Bishop D; Lawrence S; Spencer M
    J Sci Med Sport; 2003 Jun; 6(2):199-209. PubMed ID: 12945626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of creatine monohydrate supplementation on sprint skating in ice-hockey players.
    Cornish SM; Chilibeck PD; Burke DG
    J Sports Med Phys Fitness; 2006 Mar; 46(1):90-8. PubMed ID: 16596105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does upper-body compression improve 3 × 3-min double-poling sprint performance?
    Sperlich B; Born DP; Zinner C; Hauser A; Holmberg HC
    Int J Sports Physiol Perform; 2014 Jan; 9(1):48-57. PubMed ID: 23881333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Recovery Promotes Superior Performance and Reduced Physiological Stress Across Different Phases of Short-Distance Repeated Sprints.
    Scanlan AT; Madueno MC
    J Strength Cond Res; 2016 Sep; 30(9):2540-9. PubMed ID: 26808862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training.
    Dæhlin TE; Haugen OC; Haugerud S; Hollan I; Raastad T; Rønnestad BR
    Int J Sports Physiol Perform; 2017 Aug; 12(7):893-900. PubMed ID: 27918670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of warm up on single and intermittent-sprint performance.
    Yaicharoen P; Wallman K; Bishop D; Morton A
    J Sports Sci; 2012; 30(8):833-40. PubMed ID: 22458699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.