These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23628943)

  • 21. Hierarchical carbon foams with independently tunable mesopore and macropore size distributions.
    Gross AF; Nowak AP
    Langmuir; 2010 Jul; 26(13):11378-83. PubMed ID: 20491463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rigid crosslinked polyacrylamide monoliths with well-defined macropores synthesized by living polymerization.
    Hasegawa J; Kanamori K; Nakanishi K; Hanada T; Yamago S
    Macromol Rapid Commun; 2009 Jun; 30(12):986-90. PubMed ID: 21706559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications.
    Abi Jaoudé M; Randon J; Bordes C; Lanteri P; Bois L
    Anal Bioanal Chem; 2012 May; 403(4):1145-55. PubMed ID: 22286081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanowormlike Li2FeSiO4-C composites as lithium-ion battery cathodes with superior high-rate capability.
    Wu X; Wang X; Zhang Y
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2510-6. PubMed ID: 23461353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths.
    Kanamori K; Nakanishi K
    Chem Soc Rev; 2011 Feb; 40(2):754-70. PubMed ID: 21085718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds.
    Konishi J; Fujita K; Nakanishi K; Hirao K; Morisato K; Miyazaki S; Ohira M
    J Chromatogr A; 2009 Oct; 1216(44):7375-83. PubMed ID: 19580973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation.
    Guo X; Song J; Lvlin Y; Nakanishi K; Kanamori K; Yang H
    Sci Technol Adv Mater; 2015 Apr; 16(2):025003. PubMed ID: 27877772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New monolithic capillary columns with well-defined macropores based on poly(styrene-co-divinylbenzene).
    Hasegawa G; Kanamori K; Ishizuka N; Nakanishi K
    ACS Appl Mater Interfaces; 2012 May; 4(5):2343-7. PubMed ID: 22530588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in porous characteristics of styrenic monoliths prepared by controlled thermal polymerization in molds of varying dimensions.
    Byström E; Viklund C; Irgum K
    J Sep Sci; 2010 Feb; 33(2):191-9. PubMed ID: 20087873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity.
    Li F; Wang Z; Ergang NS; Fyfe CA; Stein A
    Langmuir; 2007 Mar; 23(7):3996-4004. PubMed ID: 17370995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mg doped Li
    Kumar A; Jayakumar OD; Jagannath ; Bashiri P; Nazri GA; Naik VM; Naik R
    Dalton Trans; 2017 Oct; 46(38):12908-12915. PubMed ID: 28926060
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries.
    Shen X; Mu D; Chen S; Wu B; Wu F
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3118-25. PubMed ID: 23532681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphology and separation efficiency of a new generation of analytical silica monoliths.
    Hormann K; Müllner T; Bruns S; Höltzel A; Tallarek U
    J Chromatogr A; 2012 Jan; 1222():46-58. PubMed ID: 22197022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology.
    Drisko GL; Chee Kimling M; Scales N; Ide A; Sizgek E; Caruso RA; Luca V
    Langmuir; 2010 Nov; 26(22):17581-8. PubMed ID: 20936801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials.
    Roberts AD; Li X; Zhang H
    Chem Soc Rev; 2014 Jul; 43(13):4341-56. PubMed ID: 24705734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Core-Shell Heterostructure CNT@Li
    Peng T; Guo W; Zhang Y; Wang Y; Zhu K; Guo Y; Wang Y; Lu Y; Yan H
    Nanoscale Res Lett; 2019 Oct; 14(1):326. PubMed ID: 31624928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.