BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 236292)

  • 1. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. II. Kinetics and regulatory function.
    Kimura K; Goto T
    J Biochem; 1975 Feb; 77(2):415-20. PubMed ID: 236292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis I. Purification and properties.
    Kimura K
    J Biochem; 1975 Feb; 77(2):405-13. PubMed ID: 236291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridine-2, 6-dicarboxylic acid (dipicolinic acid) formation in Bacillus subtilis. II Non-enzymatic and enzymatic formations of dipicolinic acid from alpha, epsilon-diketopimelic acid and ammonia.
    Kimura K; Sasakawa T
    J Biochem; 1975 Aug; 78(2):381-90. PubMed ID: 6441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydrodipicolinate reductases from Bacillus cereus and Bacillus megaterium.
    Kimura K; Goto T
    J Biochem; 1977 May; 81(5):1367-73. PubMed ID: 19431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis.
    Yamakura F; Ikeda Y; Kimura K; Sasakawa T
    J Biochem; 1974 Sep; 76(3):611-21. PubMed ID: 4215809
    [No Abstract]   [Full Text] [Related]  

  • 7. Alpha-alpha'-dipyridyl or ortho-phenanthroline stimulation of the soluble reduced nicotinamide adenine dinucleotide oxidase from Bacillus subtilis spores and dipicolinic acid inhibition of the stimulated enzymes.
    Tochikubo K
    J Bacteriol; 1974 Mar; 117(3):1017-22. PubMed ID: 4149880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of dihydrodipicolinate synthase and aspartate kinase in Bacillus subtilis.
    Vold B; Szulmajster J; Carbone A
    J Bacteriol; 1975 Mar; 121(3):970-4. PubMed ID: 163819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI.
    Lawson RJ; von Wachenfeldt C; Haq I; Perkins J; Munro AW
    Biochemistry; 2004 Oct; 43(39):12390-409. PubMed ID: 15449930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics.
    Kobayashi K; Yoshimoto A
    Biochim Biophys Acta; 1982 Aug; 705(3):348-56. PubMed ID: 6751400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of NADPH-dependent flavin reductase. An enzyme required for the activation of chorismate synthase in Bacillus subtilis.
    Hasan N; Nester EW
    J Biol Chem; 1978 Jul; 253(14):4987-92. PubMed ID: 97284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of chorismate synthase from Bacillus subtilis.
    Hasan N; Nester EW
    J Biol Chem; 1978 Jul; 253(14):4993-8. PubMed ID: 97285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial sporulation and regulation of dihydrodipicolinate synthase in ribonucleic acid polymerase mutants of Bacillus subtilis.
    Hoganson DA; Irgens RL; Doi RH; Stahly DP
    J Bacteriol; 1975 Dec; 124(3):1628-9. PubMed ID: 811651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylamide gel electrophoresis of intracellular proteins during early stages of sporulation in Bacillus subtilis.
    Bott KF
    J Bacteriol; 1971 Nov; 108(2):720-32. PubMed ID: 4399643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase.
    Garnaud PE; Koetsier M; Ost TW; Daff S
    Biochemistry; 2004 Aug; 43(34):11035-44. PubMed ID: 15323562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase.
    Morokutti A; Lyskowski A; Sollner S; Pointner E; Fitzpatrick TB; Kratky C; Gruber K; Macheroux P
    Biochemistry; 2005 Oct; 44(42):13724-33. PubMed ID: 16229462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivative action of ethylenediaminetetraacetic acid or dipicolinic acid on inactive glucose dehydrogenase obtained from heated spores of Bacillus subtilis.
    Hachisuka Y; Tochikubo K
    J Bacteriol; 1971 Aug; 107(2):442-7. PubMed ID: 4329730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis.
    Deller S; Sollner S; Trenker-El-Toukhy R; Jelesarov I; Gübitz GM; Macheroux P
    Biochemistry; 2006 Jun; 45(23):7083-91. PubMed ID: 16752898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.