BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23629423)

  • 1. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.
    Palmans H; Al-Sulaiti L; Andreo P; Shipley D; Lühr A; Bassler N; Martinkovič J; Dobrovodský J; Rossomme S; Thomas RA; Kacperek A
    Phys Med Biol; 2013 May; 58(10):3481-99. PubMed ID: 23629423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.
    Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S
    Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluence correction factors and stopping power ratios for clinical ion beams.
    Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N
    Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.
    Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H
    Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam.
    Lourenço A; Thomas R; Homer M; Bouchard H; Rossomme S; Renaud J; Kanai T; Royle G; Palmans H
    Phys Med Biol; 2017 Apr; 62(7):N134-N146. PubMed ID: 28211796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluence correction factors in plastic phantoms for clinical proton beams.
    Palmans H; Symons JE; Denis JM; de Kock EA; Jones DT; Vynckier S
    Phys Med Biol; 2002 Sep; 47(17):3055-71. PubMed ID: 12361210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water equivalence of some plastic-water phantom materials for clinical proton beam dosimetry.
    Al-Sulaiti L; Shipley D; Thomas R; Owen P; Kacperek A; Regan PH; Palmans H
    Appl Radiat Isot; 2012 Jul; 70(7):1052-7. PubMed ID: 22386662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.
    Rossomme S; Palmans H; Thomas R; Lee N; Bailey M; Shipley D; Al-Sulaiti L; Cirrone P; Romano F; Kacperek A; Bertrand D; Vynckier S
    Med Phys; 2012 Jun; 39(6Part12):3736-3737. PubMed ID: 28517815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the water-equivalence of plastic materials in low- and high-energy clinical proton beams.
    Lourenço A; Shipley D; Wellock N; Thomas R; Bouchard H; Kacperek A; Fracchiolla F; Lorentini S; Schwarz M; MacDougall N; Royle G; Palmans H
    Phys Med Biol; 2017 May; 62(10):3883-3901. PubMed ID: 28319031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCNPX simulation of proton dose distributions in a water phantom.
    Lee CC; Lee YJ; Chen SK; Chiang BH; Tung CJ; Chao TC
    Biomed J; 2015; 38(5):414-20. PubMed ID: 26459794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of water equivalent ratios for various materials at proton energies ranging 10-500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes.
    Safigholi H; Song WY
    Phys Med Biol; 2018 Jul; 63(15):155010. PubMed ID: 29968580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dose calculation algorithm with correction for proton-nucleus interactions in non-water materials for proton radiotherapy treatment planning.
    Inaniwa T; Kanematsu N; Sato S; Kohno R
    Phys Med Biol; 2016 Jan; 61(1):67-89. PubMed ID: 26611641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations of ³He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness.
    Taleei R; Guan F; Peeler C; Bronk L; Patel D; Mirkovic D; Grosshans DR; Mohan R; Titt U
    Med Phys; 2016 Feb; 43(2):761-76. PubMed ID: 26843239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron fluence perturbation correction factors for solid state detectors irradiated in megavoltage electron beams.
    Mobit PN; Sandison GA; Nahum AE
    Phys Med Biol; 2000 Feb; 45(2):255-65. PubMed ID: 10701502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV).
    Medin J; Andreo P
    Phys Med Biol; 1997 Jan; 42(1):89-105. PubMed ID: 9015811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE.
    Siegbahn EA; Nilsson B; Fernández-Varea JM; Andreo P
    Phys Med Biol; 2003 May; 48(10):1263-75. PubMed ID: 12812445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
    Sterpin E; Sorriaux J; Vynckier S
    Med Phys; 2013 Nov; 40(11):111705. PubMed ID: 24320413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.