These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23629532)

  • 1. Influence of porosity on corrosion behaviour of Ti-39Nb alloy for dental applications.
    Fojt J; Joska L
    Biomed Mater Eng; 2013; 23(3):183-95. PubMed ID: 23629532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative corrosion study of Ti-Ta alloys for dental applications.
    Mareci D; Chelariu R; Gordin DM; Ungureanu G; Gloriant T
    Acta Biomater; 2009 Nov; 5(9):3625-39. PubMed ID: 19508903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of fluoride ions on the corrosion behaviour of Ti metal, and Ti6-Al-7Nb and Ti-6Al-4V alloys in artificial saliva.
    Milošev I; Kapun B; Selih VS
    Acta Chim Slov; 2013; 60(3):543-55. PubMed ID: 24169708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion behavior of Ti-39Nb alloy for dentistry.
    Fojt J; Joska L; Malek J; Sefl V
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():532-7. PubMed ID: 26249624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion behaviour of Ti-15Mo alloy for dental implant applications.
    Kumar S; Narayanan TS
    J Dent; 2008 Jul; 36(7):500-7. PubMed ID: 18468762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Corrosion behavior of dental alloys coated with titanium niobium oxinitride].
    Thull R
    Dtsch Zahnarztl Z; 1991 Nov; 46(11):712-7. PubMed ID: 1817869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion behaviour of TiN and ZrN in the environment containing fluoride ions.
    Joska L; Fojt J; Hradilova M; Hnilica F; Cvrcek L
    Biomed Mater; 2010 Oct; 5(5):054108. PubMed ID: 20876958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid.
    Guerra C; Sancy M; Walczak M; Martínez C; Ringuedé A; Cassir M; Han J; Ogle K; de Melo HG; Salinas V; Aguilar C
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110758. PubMed ID: 32279776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials.
    Yılmaz E; Gökçe A; Findik F; Gulsoy HO; İyibilgin O
    J Mech Behav Biomed Mater; 2018 Nov; 87():59-67. PubMed ID: 30041140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fluoride on the corrosion behavior of Ti and Ti6Al4V dental implants coupled with different superstructures.
    Anwar EM; Kheiralla LS; Tammam RH
    J Oral Implantol; 2011 Jun; 37(3):309-17. PubMed ID: 20545548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study.
    Barão VA; Mathew MT; Assunção WG; Yuan JC; Wimmer MA; Sukotjo C
    Clin Oral Implants Res; 2012 Sep; 23(9):1055-62. PubMed ID: 22092540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Electrochemical Methods to Determine the Effect of Nitrides of Alloying Elements on the Electrochemical Properties of Titanium β-Alloys.
    Jírů J; Hybášek V; Vlčák P; Fojt J
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments.
    Nakagawa M; Matono Y; Matsuya S; Udoh K; Ishikawa K
    Biomaterials; 2005 May; 26(15):2239-46. PubMed ID: 15585225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical studies of the corrosion behaviour of titanium and the Ti-6Al-4V alloy using electrochemical impedance spectroscopy.
    Grosgogeat B; Boinet M; Dalard F; Lissac M
    Biomed Mater Eng; 2004; 14(3):323-31. PubMed ID: 15299244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion-fatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments.
    Zavanelli RA; Pessanha Henriques GE; Ferreira I; De Almeida Rollo JM
    J Prosthet Dent; 2000 Sep; 84(3):274-9. PubMed ID: 11005899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Al Addition on Corrosion Protection of Ti-39Nb-6Zr Alloy for Biological Applications.
    Hwang YJ; Lee DG
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3811-3815. PubMed ID: 30764938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical corrosion of titanium and titanium-based alloys.
    Kuphasuk C; Oshida Y; Andres CJ; Hovijitra ST; Barco MT; Brown DT
    J Prosthet Dent; 2001 Feb; 85(2):195-202. PubMed ID: 11208211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility and Biological Corrosion Resistance of Ti-39Nb-6Zr+0.45Al Implant Alloy.
    Hwang YJ; Choi YS; Hwang YH; Cho HW; Lee DG
    J Funct Biomater; 2020 Dec; 12(1):. PubMed ID: 33383616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment.
    Golvano I; Garcia I; Conde A; Tato W; Aginagalde A
    J Mech Behav Biomed Mater; 2015 Sep; 49():186-96. PubMed ID: 26042765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.