BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23629879)

  • 1. Comparative visual function in predatory fishes from the Indian River Lagoon.
    McComb DM; Kajiura SM; Horodysky AZ; Frank TM
    Physiol Biochem Zool; 2013; 86(3):285-97. PubMed ID: 23629879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments.
    McComb DM; Frank TM; Hueter RE; Kajiura SM
    Physiol Biochem Zool; 2010; 83(2):299-307. PubMed ID: 20109067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay.
    Horodysky AZ; Brill RW; Warrant EJ; Musick JA; Latour RJ
    J Exp Biol; 2010 May; 213(Pt 10):1751-61. PubMed ID: 20435826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision in elasmobranchs and their relatives: 21st century advances.
    Lisney TJ; Theiss SM; Collin SP; Hart NS
    J Fish Biol; 2012 Apr; 80(5):2024-54. PubMed ID: 22497415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M; Visnjić-Jeftić Z; Damjanović I; Nikcević M; Andjus P; Gacić Z
    Gen Physiol Biophys; 2009 Sep; 28(3):276-82. PubMed ID: 20037193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative visual function in five sciaenid fishes inhabiting Chesapeake Bay.
    Horodysky AZ; Brill RW; Warrant EJ; Musick JA; Latour RJ
    J Exp Biol; 2008 Nov; 211(Pt 22):3601-12. PubMed ID: 18978225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of human cone photoreceptors to the photopic flicker electroretinogram.
    Verma R; Pianta MJ
    J Vis; 2009 Mar; 9(3):9.1-12. PubMed ID: 19757948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the retinal structure and function in four bird species as a function of the time they start singing in the morning.
    McNeil R; McSween A; Lachapelle P
    Brain Behav Evol; 2005; 65(3):202-14. PubMed ID: 15703474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors that influence the increase in the electroretinogram 30-Hz flicker amplitude during light adaptation.
    Raether K; Zrenner E
    Ger J Ophthalmol; 1996 Sep; 5(5):285-8. PubMed ID: 8911951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human scotopic sensitivity is regulated postreceptorally by changing the speed of the scotopic response.
    Stockman A; Candler T; Sharpe LT
    J Vis; 2010 Feb; 10(2):12.1-19. PubMed ID: 20462313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Photoreceptors and visual pigments of Black Sea elasmobranchs].
    Govardovskiĭ VI; Lychakov LV
    Zh Evol Biokhim Fiziol; 1977; 13(2):162-6. PubMed ID: 868394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Into the twilight zone: the complexities of mesopic vision and luminous efficiency.
    Stockman A; Sharpe LT
    Ophthalmic Physiol Opt; 2006 May; 26(3):225-39. PubMed ID: 16684149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal and nocturnal visual capabilities in shorebirds as a function of their feeding strategies.
    Rojas LM; McNeil R; Cabana T; Lachapelle P
    Brain Behav Evol; 1999; 53(1):29-43. PubMed ID: 9858803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiology of photopic and scotopic vision].
    Schäfer SS
    Ultraschall Med; 1998 Dec; 19(6):M86-9. PubMed ID: 10028556
    [No Abstract]   [Full Text] [Related]  

  • 19. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests.
    Veilleux CC; Cummings ME
    J Exp Biol; 2012 Dec; 215(Pt 23):4085-96. PubMed ID: 22899522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans.
    Frank TM; Johnsen S; Cronin TW
    J Exp Biol; 2012 Oct; 215(Pt 19):3344-53. PubMed ID: 22956247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.