These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23629940)

  • 1. Characterization of chondrocyte scaffold carriers for cell-based gene therapy in articular cartilage repair.
    Shui W; Yin L; Luo J; Li R; Zhang W; Zhang J; Huang W; Hu N; Liang X; Deng ZL; Hu Z; Shi LL; Luu HH; Haydon RC; He TC; Ho SH
    J Biomed Mater Res A; 2013 Dec; 101(12):3542-50. PubMed ID: 23629940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.
    Zhang X; Wu Y; Pan Z; Sun H; Wang J; Yu D; Zhu S; Dai J; Chen Y; Tian N; Heng BC; Coen ND; Xu H; Ouyang H
    Acta Biomater; 2016 Sep; 42():329-340. PubMed ID: 27345139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis.
    Munirah S; Kim SH; Ruszymah BH; Khang G
    Eur Cell Mater; 2008 Feb; 15():41-52. PubMed ID: 18288632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model.
    Kazemnejad S; Khanmohammadi M; Mobini S; Taghizadeh-Jahed M; Khanjani S; Arasteh S; Golshahi H; Torkaman G; Ravanbod R; Heidari-Vala H; Moshiri A; Tahmasebi MN; Akhondi MM
    Cell Tissue Res; 2016 Jun; 364(3):559-572. PubMed ID: 26822846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size.
    Conoscenti G; Schneider T; Stoelzel K; Carfì Pavia F; Brucato V; Goegele C; La Carrubba V; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():449-459. PubMed ID: 28866186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin sealants from fresh or fresh/frozen plasma as scaffolds for in vitro articular cartilage regeneration.
    Dare EV; Griffith M; Poitras P; Wang T; Dervin GF; Giulivi A; Hincke MT
    Tissue Eng Part A; 2009 Aug; 15(8):2285-97. PubMed ID: 19226200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393.
    Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G
    Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative, osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination.
    Reyes R; Pec MK; Sánchez E; del Rosario C; Delgado A; Évora C
    Eur Cell Mater; 2013 Jul; 25():351-65; discussion 365. PubMed ID: 23832688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes.
    Odabas S; Feichtinger GA; Korkusuz P; Inci I; Bilgic E; Yar AS; Cavusoglu T; Menevse S; Vargel I; Piskin E
    J Tissue Eng Regen Med; 2013 Oct; 7(10):831-40. PubMed ID: 23281155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Karyotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering.
    Trimborn M; Endres M; Bommer C; Janke U; Krüger JP; Morawietz L; Kreuz PC; Kaps C
    Acta Biomater; 2012 Apr; 8(4):1519-29. PubMed ID: 22214539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing.
    Zhao P; Liu S; Bai Y; Lu S; Peng J; Zhang L; Huang J; Zhao B; Xu W; Guo Q
    Tissue Eng Part A; 2018 Jun; 24(11-12):905-914. PubMed ID: 29264993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering.
    Chen JP; Su CH
    Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model.
    Oshima Y; Harwood FL; Coutts RD; Kubo T; Amiel D
    Tissue Eng Part C Methods; 2009 Dec; 15(4):595-604. PubMed ID: 19231922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair.
    Jiang Y; Chen LK; Zhu DC; Zhang GR; Guo C; Qi YY; Ouyang HW
    Tissue Eng Part A; 2010 May; 16(5):1621-32. PubMed ID: 20001220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen scaffold for cartilage tissue engineering: the benefit of fibrin glue and the proper culture time in an infant cartilage model.
    Deponti D; Di Giancamillo A; Gervaso F; Domenicucci M; Domeneghini C; Sannino A; Peretti GM
    Tissue Eng Part A; 2014 Mar; 20(5-6):1113-26. PubMed ID: 24152291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Longan polysaccharides on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro.
    Zhu S; Zhou B; Liu Q; Wu H; Zheng L
    Med Biol Eng Comput; 2016 Apr; 54(4):607-17. PubMed ID: 26231088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges.
    Claus S; Mayer N; Aubert-Foucher E; Chajra H; Perrier-Groult E; Lafont J; Piperno M; Damour O; Mallein-Gerin F
    Tissue Eng Part C Methods; 2012 Feb; 18(2):104-12. PubMed ID: 21933021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees.
    Kang SW; Yoon JR; Lee JS; Kim HJ; Lim HW; Lim HC; Park JH; Kim BS
    J Biomater Sci Polym Ed; 2006; 17(8):925-39. PubMed ID: 17024881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.