These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 23630273)

  • 41. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates.
    Sukhanova MV; Hamon L; Kutuzov MM; Joshi V; Abrakhi S; Dobra I; Curmi PA; Pastre D; Lavrik OI
    J Mol Biol; 2019 Jul; 431(15):2655-2673. PubMed ID: 31129062
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family.
    Minko IG; Yamanaka K; Kozekov ID; Kozekova A; Indiani C; O'Donnell ME; Jiang Q; Goodman MF; Rizzo CJ; Lloyd RS
    Chem Res Toxicol; 2008 Oct; 21(10):1983-90. PubMed ID: 18788757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses.
    Sobol RW; Kartalou M; Almeida KH; Joyce DF; Engelward BP; Horton JK; Prasad R; Samson LD; Wilson SH
    J Biol Chem; 2003 Oct; 278(41):39951-9. PubMed ID: 12882965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-Molecule Observation of DNA Replication Repair Pathways in E. coli.
    Wollman AJ; Syeda AH; McGlynn P; Leake MC
    Adv Exp Med Biol; 2016; 915():5-16. PubMed ID: 27193534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imbalanced base excision repair in response to folate deficiency is accelerated by polymerase beta haploinsufficiency.
    Cabelof DC; Raffoul JJ; Nakamura J; Kapoor D; Abdalla H; Heydari AR
    J Biol Chem; 2004 Aug; 279(35):36504-13. PubMed ID: 15218023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV.
    Kumari A; Minko IG; Harbut MB; Finkel SE; Goodman MF; Lloyd RS
    J Biol Chem; 2008 Oct; 283(41):27433-27437. PubMed ID: 18697749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Live cell single-molecule imaging to study DNA repair in human cells.
    Heyza JR; Mikhova M; Schmidt JC
    DNA Repair (Amst); 2023 Sep; 129():103540. PubMed ID: 37467632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methyl-directed mismatch repair is bidirectional.
    Cooper DL; Lahue RS; Modrich P
    J Biol Chem; 1993 Jun; 268(16):11823-9. PubMed ID: 8389365
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of oxidative DNA damage repair: the adenine:8-oxo-guanine problem.
    Markkanen E; Hübscher U; van Loon B
    Cell Cycle; 2012 Mar; 11(6):1070-5. PubMed ID: 22370481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleotide excision repair in Escherichia coli.
    Van Houten B
    Microbiol Rev; 1990 Mar; 54(1):18-51. PubMed ID: 2181258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1.
    Liu L; Kong M; Gassman NR; Freudenthal BD; Prasad R; Zhen S; Watkins SC; Wilson SH; Van Houten B
    Nucleic Acids Res; 2017 Dec; 45(22):12834-12847. PubMed ID: 29121337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of Escherichia coli DNA polymerase V.
    Schlacher K; Jiang Q; Woodgate R; Goodman MF
    Methods Enzymol; 2006; 408():378-90. PubMed ID: 16793381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic requirement for mutagenesis of the G[8,5-Me]T cross-link in Escherichia coli: DNA polymerases IV and V compete for error-prone bypass.
    Raychaudhury P; Basu AK
    Biochemistry; 2011 Mar; 50(12):2330-8. PubMed ID: 21302943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis.
    Prasad R; Singhal RK; Srivastava DK; Molina JT; Tomkinson AE; Wilson SH
    J Biol Chem; 1996 Jul; 271(27):16000-7. PubMed ID: 8663274
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair.
    Ghodke H; Ho HN; van Oijen AM
    Nat Commun; 2020 Mar; 11(1):1477. PubMed ID: 32198385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V.
    McDonald JP; Vaisman A; Kuban W; Goodman MF; Woodgate R
    PLoS Genet; 2012; 8(11):e1003030. PubMed ID: 23144626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review of recent experiments on step-to-step "hand-off" of the DNA intermediates in mammalian base excision repair pathways.
    Prasad R; Beard WA; Batra VK; Liu Y; Shock DD; Wilson SH
    Mol Biol (Mosk); 2011; 45(4):586-600. PubMed ID: 21954590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Repairing DNA-methylation damage.
    Sedgwick B
    Nat Rev Mol Cell Biol; 2004 Feb; 5(2):148-57. PubMed ID: 15040447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA nicks inflicted by restriction endonucleases are repaired by a RecA- and RecB-dependent pathway in Escherichia coli.
    Heitman J; Ivanenko T; Kiss A
    Mol Microbiol; 1999 Sep; 33(6):1141-51. PubMed ID: 10510229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcription coupled nucleotide excision repair by isolated Escherichia coli membrane-associated nucleoids.
    ClGL ; Kovalsky O; Grossman L
    Nucleic Acids Res; 1998 Mar; 26(6):1466-72. PubMed ID: 9490793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.