BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23630314)

  • 1. The tRNA-modifying function of MnmE is controlled by post-hydrolysis steps of its GTPase cycle.
    Prado S; Villarroya M; Medina M; Armengod ME
    Nucleic Acids Res; 2013 Jul; 41(12):6190-208. PubMed ID: 23630314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function.
    Yim L; Martínez-Vicente M; Villarroya M; Aguado C; Knecht E; Armengod ME
    J Biol Chem; 2003 Aug; 278(31):28378-87. PubMed ID: 12730230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex.
    Meyer S; Wittinghofer A; Versées W
    J Mol Biol; 2009 Oct; 392(4):910-22. PubMed ID: 19591841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mutagenesis in the switch I region and conserved arginines of Escherichia coli MnmE protein, a GTPase involved in tRNA modification.
    Martínez-Vicente M; Yim L; Villarroya M; Mellado M; Pérez-Payá E; Björk GR; Armengod ME
    J Biol Chem; 2005 Sep; 280(35):30660-70. PubMed ID: 15983041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction.
    Fislage M; Wauters L; Versées W
    Biopolymers; 2016 Aug; 105(8):568-79. PubMed ID: 26832457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization.
    Fislage M; Brosens E; Deyaert E; Spilotros A; Pardon E; Loris R; Steyaert J; Garcia-Pino A; Versées W
    Nucleic Acids Res; 2014 May; 42(9):5978-92. PubMed ID: 24634441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of G domain conformations in the tRNA-modifying MnmE-GidA complex observed with double electron electron resonance spectroscopy.
    Böhme S; Meyer S; Krüger A; Steinhoff HJ; Wittinghofer A; Klare JP
    J Biol Chem; 2010 May; 285(22):16991-7000. PubMed ID: 20353943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
    Meyer S; Böhme S; Krüger A; Steinhoff HJ; Klare JP; Wittinghofer A
    PLoS Biol; 2009 Oct; 7(10):e1000212. PubMed ID: 19806182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
    Scrima A; Wittinghofer A
    EMBO J; 2006 Jun; 25(12):2940-51. PubMed ID: 16763562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human GTPBP3, a GTP-binding protein involved in mitochondrial tRNA modification.
    Villarroya M; Prado S; Esteve JM; Soriano MA; Aguado C; Pérez-Martínez D; Martínez-Ferrandis JI; Yim L; Victor VM; Cebolla E; Montaner A; Knecht E; Armengod ME
    Mol Cell Biol; 2008 Dec; 28(24):7514-31. PubMed ID: 18852288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MnmE, a Central tRNA-Modifying GTPase, Is Essential for the Growth, Pathogenicity, and Arginine Metabolism of
    Gao T; Yuan F; Liu Z; Liu W; Zhou D; Yang K; Duan Z; Guo R; Liang W; Hu Q; Tian Y; Zhou R
    Front Cell Infect Microbiol; 2019; 9():173. PubMed ID: 31179247
    [No Abstract]   [Full Text] [Related]  

  • 13. The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control
    Rodionova IA; Goodacre N; Do J; Hosseinnia A; Babu M; Uetz P; Saier MH
    J Biol Chem; 2018 Oct; 293(40):15725-15732. PubMed ID: 30089654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of the interaction of guanine nucleotides with ribosomal GTPase Lsg1.
    Jaramillo-Ramírez J; Marcial-Bazaldua N; Sánchez-Puig N
    Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140538. PubMed ID: 32916301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH.
    Anand B; Surana P; Prakash B
    PLoS One; 2010 Apr; 5(4):e9944. PubMed ID: 20376346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly and function of the tRNA-modifying GTPase MnmE adsorbed to surface functionalized bioactive glass.
    Gruian C; Boehme S; Simon S; Steinhoff HJ; Klare JP
    ACS Appl Mater Interfaces; 2014 May; 6(10):7615-25. PubMed ID: 24785159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates.
    Brandt DR; Ross EM
    J Biol Chem; 1985 Jan; 260(1):266-72. PubMed ID: 2981206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.
    Wehner M; Kunzelmann S; Herrmann C
    FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. It takes two to tango: regulation of G proteins by dimerization.
    Gasper R; Meyer S; Gotthardt K; Sirajuddin M; Wittinghofer A
    Nat Rev Mol Cell Biol; 2009 Jun; 10(6):423-9. PubMed ID: 19424291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.