BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23630339)

  • 1. Major contribution of sarcoplasmic reticulum Ca(2+) depletion during long-lasting activation of skeletal muscle.
    Robin G; Allard B
    J Gen Physiol; 2013 May; 141(5):557-65. PubMed ID: 23630339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-gated Ca(2+) influx through L-type channels contributes to sarcoplasmic reticulum Ca(2+) loading in skeletal muscle.
    Robin G; Allard B
    J Physiol; 2015 Nov; 593(21):4781-97. PubMed ID: 26383921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle.
    Sztretye M; Yi J; Figueroa L; Zhou J; Royer L; Allen P; Brum G; Ríos E
    J Gen Physiol; 2011 Aug; 138(2):231-47. PubMed ID: 21788611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers.
    Jong DS; Pape PC; Chandler WK
    J Gen Physiol; 1995 Oct; 106(4):659-704. PubMed ID: 8576702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium inactivation of calcium release in frog cut muscle fibers that contain millimolar EGTA or Fura-2.
    Jong DS; Pape PC; Baylor SM; Chandler WK
    J Gen Physiol; 1995 Aug; 106(2):337-88. PubMed ID: 8537819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control.
    Robin G; Berthier C; Allard B
    J Gen Physiol; 2012 Mar; 139(3):209-18. PubMed ID: 22371362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle.
    Pizarro G; Ríos E
    J Gen Physiol; 2004 Sep; 124(3):239-58. PubMed ID: 15337820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of calcium inactivation of sarcoplasmic reticulum calcium release by fura-2 in voltage-clamped cut twitch fibers from frog muscle.
    Jong DS; Pape PC; Chandler WK; Baylor SM
    J Gen Physiol; 1993 Aug; 102(2):333-70. PubMed ID: 8228914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle.
    Royer L; Pouvreau S; Ríos E
    J Physiol; 2008 Oct; 586(19):4609-29. PubMed ID: 18687715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca
    Maxwell JT; Blatter LA
    J Physiol; 2017 Jun; 595(12):3835-3845. PubMed ID: 28028837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1995 Aug; 106(2):259-336. PubMed ID: 8537818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of partial sarcoplasmic reticulum calcium depletion on calcium release in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1998 Sep; 112(3):263-95. PubMed ID: 9725889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1996 Jan; 107(1):79-101. PubMed ID: 8741732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse.
    Ursu D; Schuhmeier RP; Melzer W
    J Physiol; 2005 Jan; 562(Pt 2):347-65. PubMed ID: 15528246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres.
    Robin G; Allard B
    J Physiol; 2012 Dec; 590(23):6027-36. PubMed ID: 23006480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depression of voltage-activated Ca2+ release in skeletal muscle by activation of a voltage-sensing phosphatase.
    Berthier C; Kutchukian C; Bouvard C; Okamura Y; Jacquemond V
    J Gen Physiol; 2015 Apr; 145(4):315-30. PubMed ID: 25825170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca(2+) release during the quasi-steady level of release in twitch fibers from frog skeletal muscle.
    Fénelon K; Lamboley CR; Carrier N; Pape PC
    J Gen Physiol; 2012 Oct; 140(4):403-19. PubMed ID: 23008434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOCE Is Important for Maintaining Sarcoplasmic Calcium Content and Release in Skeletal Muscle Fibers.
    Sztretye M; Geyer N; Vincze J; Al-Gaadi D; Oláh T; Szentesi P; Kis G; Antal M; Balatoni I; Csernoch L; Dienes B
    Biophys J; 2017 Dec; 113(11):2496-2507. PubMed ID: 29212003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice null for calsequestrin 1 exhibit deficits in functional performance and sarcoplasmic reticulum calcium handling.
    Olojo RO; Ziman AP; Hernández-Ochoa EO; Allen PD; Schneider MF; Ward CW
    PLoS One; 2011; 6(12):e27036. PubMed ID: 22164205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanism for both capacitative Ca(2+) entry and excitation-contraction coupled Ca(2+) release by the sarcoplasmic reticulum of skeletal muscle cells.
    Islam MN; Narayanan B; Ochs RS
    Exp Biol Med (Maywood); 2002 Jun; 227(6):425-31. PubMed ID: 12037132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.