These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23630521)
1. Chlorella mirabilis as a Potential Species for Biomass Production in Low-Temperature Environment. Shukla SP; Kvíderová J; Tříska J; Elster J Front Microbiol; 2013; 4():97. PubMed ID: 23630521 [TBL] [Abstract][Full Text] [Related]
2. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
3. The green alga Kumar D; Kvíderová J; Kaštánek P; Lukavský J Eng Life Sci; 2017 Sep; 17(9):1030-1038. PubMed ID: 32624853 [TBL] [Abstract][Full Text] [Related]
4. Effect of inorganic carbon limitation on the conversion of organic carbon to total fatty acids by Monodus subterraneus. Hu H; Li JY; Zhai SW; Wu DD; Zhu SG; Zeng RJ Sci Total Environ; 2020 Oct; 737():140275. PubMed ID: 32783858 [TBL] [Abstract][Full Text] [Related]
5. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol. Paranjape K; Leite GB; Hallenbeck PC Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067 [TBL] [Abstract][Full Text] [Related]
6. Elucidating temperature on mixotrophic cultivation of a Chlorella vulgaris strain: Different carbon source application and enzyme activity revelation. Zhang Z; Gao P; Guo L; Wang Y; She Z; Gao M; Zhao Y; Jin C; Wang G Bioresour Technol; 2020 Oct; 314():123721. PubMed ID: 32622276 [TBL] [Abstract][Full Text] [Related]
7. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Feng X; Walker TH; Bridges WC; Thornton C; Gopalakrishnan K Bioresour Technol; 2014 Aug; 166():17-23. PubMed ID: 24880808 [TBL] [Abstract][Full Text] [Related]
8. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition. Zhang TY; Wang XX; Wu YH; Wang JH; Deantes-Espinosa VM; Zhuang LL; Hu HY; Wu GX Bioresour Technol; 2017 Nov; 244(Pt 2):1254-1260. PubMed ID: 28645566 [TBL] [Abstract][Full Text] [Related]
9. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
10. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: Glucose-Acetate-Phosphorus (GAP). Xie Z; Lin W; Liu J; Luo J Bioresour Technol; 2020 Oct; 313():123506. PubMed ID: 32512426 [TBL] [Abstract][Full Text] [Related]
11. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Kandimalla P; Desi S; Vurimindi H Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814 [TBL] [Abstract][Full Text] [Related]
12. Strain variation in microalgal lipid production during mixotrophic growth with glycerol. Paranjape K; Leite GB; Hallenbeck PC Bioresour Technol; 2016 Mar; 204():80-88. PubMed ID: 26773947 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast Yarrowia lipolytica. Kamzolova SV; Morgunov IG Bioresour Technol; 2018 Oct; 266():125-133. PubMed ID: 29960242 [TBL] [Abstract][Full Text] [Related]
14. Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass. Liang MH; Xue LL; Jiang JG Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552184 [TBL] [Abstract][Full Text] [Related]
15. Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum. Chang J; Le K; Song X; Jiao K; Zeng X; Ling X; Shi T; Tang X; Sun Y; Lin L Bioprocess Biosyst Eng; 2017 Dec; 40(12):1763-1773. PubMed ID: 28836004 [TBL] [Abstract][Full Text] [Related]
16. Investigating the effects of eleven key physicochemical factors on growth and lipid accumulation of Chlorella sp. as a feedstock for biodiesel production. Parichehreh R; Gheshlaghi R; Mahdavi MA; Kamyab H J Biotechnol; 2021 Nov; 340():64-74. PubMed ID: 34454961 [TBL] [Abstract][Full Text] [Related]
17. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Fei Q; Fu R; Shang L; Brigham CJ; Chang HN Bioprocess Biosyst Eng; 2015 Apr; 38(4):691-700. PubMed ID: 25332127 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. Sahin D; Tas E; Altindag UH AMB Express; 2018 Jan; 8(1):7. PubMed ID: 29368055 [TBL] [Abstract][Full Text] [Related]
19. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227. Cho S; Lee D; Luong TT; Park S; Oh YK; Lee T J Microbiol Biotechnol; 2011 Oct; 21(10):1073-80. PubMed ID: 22031034 [TBL] [Abstract][Full Text] [Related]
20. Water reuse and growth inhibition mechanisms for cultivation of microalga Euglena gracilis. Wu M; Du M; Wu G; Lu F; Li J; Lei A; Zhu H; Hu Z; Wang J Biotechnol Biofuels; 2021 Jun; 14(1):132. PubMed ID: 34090512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]