These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23630521)
21. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa. Sukačová K; Búzová D; Červený J Folia Microbiol (Praha); 2020 Oct; 65(5):901-908. PubMed ID: 32415567 [TBL] [Abstract][Full Text] [Related]
22. Endogenous regulation of the growth-rate responses of a spring-dwelling strain of the freshwater alga, Chlorella minutissima, to light and temperature. Aleya L; Dauta A; Reynolds CS Eur J Protistol; 2011 Nov; 47(4):239-44. PubMed ID: 21696928 [TBL] [Abstract][Full Text] [Related]
23. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
24. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass. Rasmey AM; Tawfik MA; Abdel-Kareem MM J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586 [TBL] [Abstract][Full Text] [Related]
25. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production. Singhasuwan S; Choorit W; Sirisansaneeyakul S; Kokkaew N; Chisti Y J Biotechnol; 2015 Dec; 216():169-77. PubMed ID: 26467713 [TBL] [Abstract][Full Text] [Related]
26. Growth, fatty, and amino acid profiles of the soil alga Vischeria sp. E71.10 (Eustigmatophyceae) under different cultivation conditions. Remias D; Nicoletti C; Krennhuber K; Möderndorfer B; Nedbalová L; Procházková L Folia Microbiol (Praha); 2020 Dec; 65(6):1017-1023. PubMed ID: 32696198 [TBL] [Abstract][Full Text] [Related]
27. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Feng P; Xu Z; Qin L; Asraful Alam M; Wang Z; Zhu S Bioresour Technol; 2020 Apr; 301():122762. PubMed ID: 31972402 [TBL] [Abstract][Full Text] [Related]
28. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Li T; Zheng Y; Yu L; Chen S Bioresour Technol; 2013 Mar; 131():60-7. PubMed ID: 23340103 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of the integrated hydrothermal carbonization-algal cultivation process for enhanced nitrogen utilization in Arthrospira platensis production. Yao C; Wu P; Pan Y; Lu H; Chi L; Meng Y; Cao X; Xue S; Yang X Bioresour Technol; 2016 Sep; 216():381-90. PubMed ID: 27262092 [TBL] [Abstract][Full Text] [Related]
30. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR). Gong M; Bassi A Appl Biochem Biotechnol; 2017 Oct; 183(2):652-671. PubMed ID: 28647795 [TBL] [Abstract][Full Text] [Related]
31. Effect of light conditions on mixotrophic cultivation of green microalgae. Patel AK; Joun JM; Hong ME; Sim SJ Bioresour Technol; 2019 Jun; 282():245-253. PubMed ID: 30870690 [TBL] [Abstract][Full Text] [Related]
32. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production. Bharte S; Desai K Environ Sci Pollut Res Int; 2019 Feb; 26(4):3492-3500. PubMed ID: 30519914 [TBL] [Abstract][Full Text] [Related]
33. Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: An integrated approach. Dash A; Banerjee R Bioresour Technol; 2017 Aug; 238():502-509. PubMed ID: 28475992 [TBL] [Abstract][Full Text] [Related]
34. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Chen CY; Lu IC; Nagarajan D; Chang CH; Ng IS; Lee DJ; Chang JS Bioresour Technol; 2018 Apr; 253():141-147. PubMed ID: 29339235 [TBL] [Abstract][Full Text] [Related]
35. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Salati S; D'Imporzano G; Menin B; Veronesi D; Scaglia B; Abbruscato P; Mariani P; Adani F Bioresour Technol; 2017 Apr; 230():82-89. PubMed ID: 28161624 [TBL] [Abstract][Full Text] [Related]
36. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Tian YT; Wang X; Cui YH; Wang SK Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549 [TBL] [Abstract][Full Text] [Related]
38. Effect of the carbon concentration, blend concentration, and renewal rate in the growth kinetic of Chlorella sp. Henrard AA; da Rosa GM; Moraes L; de Morais MG; Costa JA ScientificWorldJournal; 2014; 2014():205184. PubMed ID: 25580453 [TBL] [Abstract][Full Text] [Related]
39. Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. El-Sheekh M; Abomohra Ael-F; Hanelt D World J Microbiol Biotechnol; 2013 May; 29(5):915-22. PubMed ID: 23269508 [TBL] [Abstract][Full Text] [Related]
40. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]