These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23630521)

  • 41. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.
    Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO
    Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions.
    Abedini Najafabadi H; Malekzadeh M; Jalilian F; Vossoughi M; Pazuki G
    Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content.
    de Freitas BCB; Brächer EH; de Morais EG; Atala DIP; de Morais MG; Costa JAV
    Environ Technol; 2019 Mar; 40(8):1062-1070. PubMed ID: 29251249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils.
    Lee Chang KJ; Dumsday G; Nichols PD; Dunstan GA; Blackburn SI; Koutoulis A
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6907-18. PubMed ID: 23674153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomass production and removal of ammonium and phosphate by Chlorella sp. in sludge liquor at natural light and different levels of temperature control.
    Åkerström AM; Mortensen LM; Rusten B; Gislerød HR
    Springerplus; 2016; 5(1):676. PubMed ID: 27350913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp.
    Sharma AK; Sahoo PK; Singhal S; Patel A
    3 Biotech; 2016 Dec; 6(2):116. PubMed ID: 28330202
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
    Vishwakarma R; Dhar DW; Saxena S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.
    Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R
    Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis.
    Park SJ; Choi YE; Kim EJ; Park WK; Kim CW; Yang JW
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):3-9. PubMed ID: 21989638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341.
    Li Z; Yuan H; Yang J; Li B
    Bioresour Technol; 2011 Oct; 102(19):9128-34. PubMed ID: 21803576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterotrophic production of Chlorella sp. TISTR 8990-biomass growth and composition under various production conditions.
    Bouyam S; Choorit W; Sirisansaneeyakul S; Chisti Y
    Biotechnol Prog; 2017 Nov; 33(6):1589-1600. PubMed ID: 28653476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions.
    Gim GH; Kim JK; Kim HS; Kathiravan MN; Yang H; Jeong SH; Kim SW
    Bioprocess Biosyst Eng; 2014 Feb; 37(2):99-106. PubMed ID: 23640179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources.
    Gautam K; Pareek A; Sharma DK
    J Biosci Bioeng; 2013 Nov; 116(5):624-7. PubMed ID: 23768469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of Fe(NO
    Choi JA; Kim DY; Seo YH; Han JI
    Bioresour Technol; 2016 Dec; 222():374-379. PubMed ID: 27744162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Temperature and Other Operational Parameters on Chlorella vulgaris Mass Cultivation in a Simple and Low-Cost Column Photobioreactor.
    Bamba BS; Lozano P; Adjé F; Ouattara A; Vian MA; Tranchant C; Lozano Y
    Appl Biochem Biotechnol; 2015 Sep; 177(2):389-406. PubMed ID: 26189103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significantly enhanced biomass production of a novel bio-therapeutic strain
    Manzoor A; Qazi JI; Haq IU; Mukhtar H; Rasool A
    J Biol Eng; 2017; 11():17. PubMed ID: 28484513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.