BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23630540)

  • 21. Chromoplast differentiation: a central role for plastoglobule lipid droplets comes into focus.
    Lundquist PK
    New Phytol; 2023 Mar; 237(5):1483-1485. PubMed ID: 36649485
    [No Abstract]   [Full Text] [Related]  

  • 22. Arabidopsis thaliana plastoglobule-associated fibrillin 1a interacts with fibrillin 1b in vivo.
    Gámez-Arjona FM; de la Concepción JC; Raynaud S; Mérida Á
    FEBS Lett; 2014 Aug; 588(17):2800-4. PubMed ID: 24937144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants.
    Shanmugabalaji V; Besagni C; Piller LE; Douet V; Ruf S; Bock R; Kessler F
    Plant Mol Biol; 2013 Jan; 81(1-2):13-25. PubMed ID: 23086498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule-associated proteins in Arabidopsis.
    Gámez-Arjona FM; Raynaud S; Ragel P; Mérida A
    Plant J; 2014 Oct; 80(2):305-16. PubMed ID: 25088399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast.
    Vidi PA; Kessler F; Bréhélin C
    BMC Biotechnol; 2007 Jan; 7():4. PubMed ID: 17214877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress.
    Rey P; Gillet B; Römer S; Eymery F; Massimino J; Peltier G; Kuntz M
    Plant J; 2000 Mar; 21(5):483-94. PubMed ID: 10758499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpressing OsFBN1 enhances plastoglobule formation, reduces grain-filling percent and jasmonate levels under heat stress in rice.
    Li J; Yang J; Zhu B; Xie G
    Plant Sci; 2019 Aug; 285():230-238. PubMed ID: 31203888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Plastoglobules as a Site of Carotenoid Cleavage.
    Rottet S; Devillers J; Glauser G; Douet V; Besagni C; Kessler F
    Front Plant Sci; 2016; 7():1855. PubMed ID: 28018391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversity of carotenoid composition, sequestering structures and gene transcription in mature fruits of four Prunus species.
    Yan H; Pengfei W; Brennan H; Ping Q; Bingxiang L; Feiyan Z; Hongbo C; Haijiang C
    Plant Physiol Biochem; 2020 Jun; 151():113-123. PubMed ID: 32213457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultramicroscopy reveals that senescence induces in-situ and vacuolar degradation of plastoglobules in aging watermelon leaves.
    Liu L
    Micron; 2016 Jan; 80():135-44. PubMed ID: 26546968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking subplastidic localization of carotenoid metabolic enzymes with proteomics.
    Lundquist PK
    Methods Enzymol; 2022; 671():327-350. PubMed ID: 35878985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fibrillin protein function: the tip of the iceberg?
    Singh DK; McNellis TW
    Trends Plant Sci; 2011 Aug; 16(8):432-41. PubMed ID: 21571574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a Plastoglobule-Localized SOUL4 Heme-Binding Protein in
    Shanmugabalaji V; Grimm B; Kessler F
    Front Plant Sci; 2020; 11():2. PubMed ID: 32076429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of plastid lipid-associated protein in marine diatom enhances the xanthophyll synthesis and storage.
    Jiang EY; Fan Y; Phung NV; Xia WY; Hu GR; Li FL
    Front Microbiol; 2023; 14():1143017. PubMed ID: 37152729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plastoglobular protein 18 is involved in chloroplast function and thylakoid formation.
    Espinoza-Corral R; Heinz S; Klingl A; Jahns P; Lehmann M; Meurer J; Nickelsen J; Soll J; Schwenkert S
    J Exp Bot; 2019 Aug; 70(15):3981-3993. PubMed ID: 30976809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns.
    Huang H; Lu C; Ma S; Wang X; Dai S
    Protoplasma; 2019 Nov; 256(6):1629-1645. PubMed ID: 31267226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plastid lipid droplets at the crossroads of prenylquinone metabolism.
    Eugeni Piller L; Abraham M; Dörmann P; Kessler F; Besagni C
    J Exp Bot; 2012 Feb; 63(4):1609-18. PubMed ID: 22371323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastoglobule-Targeting Competence of a Putative Transit Peptide Sequence from Rice Phytoene Synthase 2 in Plastids.
    You MK; Kim JH; Lee YJ; Jeong YS; Ha SH
    Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28025520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria.
    Grabsztunowicz M; Rokka A; Farooq I; Aro EM; Mulo P
    BMC Plant Biol; 2020 Sep; 20(1):413. PubMed ID: 32887556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GFP-tagging of Arabidopsis acyl-activating enzymes raises the issue of peroxisome-chloroplast import competition versus dual localization.
    Hooks KB; Turner JE; Graham IA; Runions J; Hooks MA
    J Plant Physiol; 2012 Nov; 169(16):1631-8. PubMed ID: 22920973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.