These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 23631422)
21. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes. Solomon EI Inorg Chem; 2016 Jul; 55(13):6364-75. PubMed ID: 27299802 [TBL] [Abstract][Full Text] [Related]
22. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Yoon J; Fujii S; Solomon EI Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471 [TBL] [Abstract][Full Text] [Related]
23. In vitro unfolding of yeast multicopper oxidase Fet3p variants reveals unique role of each metal site. Sedlák E; Ziegler L; Kosman DJ; Wittung-Stafshede P Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19258-63. PubMed ID: 19033465 [TBL] [Abstract][Full Text] [Related]
24. Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae. Stoj CS; Augustine AJ; Solomon EI; Kosman DJ J Biol Chem; 2007 Mar; 282(11):7862-8. PubMed ID: 17220296 [TBL] [Abstract][Full Text] [Related]
25. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Yoon J; Liboiron BD; Sarangi R; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13609-14. PubMed ID: 17702865 [TBL] [Abstract][Full Text] [Related]
26. Variable-temperature, variable-field magnetic circular dichroism studies of tris-hydroxy- and mu3-oxo-bridged trinuclear Cu(II) complexes: evaluation of proposed structures of the native intermediate of the multicopper oxidases. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2005 Oct; 127(39):13680-93. PubMed ID: 16190734 [TBL] [Abstract][Full Text] [Related]
27. Mechanism of the reduction of the native intermediate in the multicopper oxidases: insights into rapid intramolecular electron transfer in turnover. Heppner DE; Kjaergaard CH; Solomon EI J Am Chem Soc; 2014 Dec; 136(51):17788-801. PubMed ID: 25490729 [TBL] [Abstract][Full Text] [Related]
28. The copper-iron connection in biology: structure of the metallo-oxidase Fet3p. Taylor AB; Stoj CS; Ziegler L; Kosman DJ; Hart PJ Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15459-64. PubMed ID: 16230618 [TBL] [Abstract][Full Text] [Related]
29. Nature of the intermediate formed in the reduction of O(2) to H(2)O at the trinuclear copper cluster active site in native laccase. Lee SK; George SD; Antholine WE; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2002 May; 124(21):6180-93. PubMed ID: 12022853 [TBL] [Abstract][Full Text] [Related]
30. The Type 1 Blue Copper Site: From Electron Transfer to Biological Function. Arcos-López T; Schuth N; Quintanar L Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851824 [TBL] [Abstract][Full Text] [Related]
31. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Kjaergaard CH; Qayyum MF; Wong SD; Xu F; Hemsworth GR; Walton DJ; Young NA; Davies GJ; Walton PH; Johansen KS; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8797-802. PubMed ID: 24889637 [TBL] [Abstract][Full Text] [Related]
32. Role of a Tyrosine Radical in Human Ceruloplasmin Catalysis. Tian S; Jones SM; Solomon EI ACS Cent Sci; 2020 Oct; 6(10):1835-1843. PubMed ID: 33145420 [TBL] [Abstract][Full Text] [Related]
33. Structural basis of the ferrous iron specificity of the yeast ferroxidase, Fet3p. Stoj CS; Augustine AJ; Zeigler L; Solomon EI; Kosman DJ Biochemistry; 2006 Oct; 45(42):12741-9. PubMed ID: 17042492 [TBL] [Abstract][Full Text] [Related]
34. New insights into the catalytic active-site structure of multicopper oxidases. Komori H; Sugiyama R; Kataoka K; Miyazaki K; Higuchi Y; Sakurai T Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):772-9. PubMed ID: 24598746 [TBL] [Abstract][Full Text] [Related]
35. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. Stoj C; Kosman DJ FEBS Lett; 2003 Nov; 554(3):422-6. PubMed ID: 14623105 [TBL] [Abstract][Full Text] [Related]
36. Shall we dance? How a multicopper oxidase chooses its electron transfer partner. Quintanar L; Stoj C; Taylor AB; Hart PJ; Kosman DJ; Solomon EI Acc Chem Res; 2007 Jun; 40(6):445-52. PubMed ID: 17425282 [TBL] [Abstract][Full Text] [Related]
37. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic and electronic structure studies of the mu(4)-sulfide bridged tetranuclear Cu(Z) cluster in N(2)O reductase: molecular insight into the catalytic mechanism. Chen P; Cabrito I; Moura JJ; Moura I; Solomon EI J Am Chem Soc; 2002 Sep; 124(35):10497-507. PubMed ID: 12197752 [TBL] [Abstract][Full Text] [Related]
40. Chloride Control of the Mechanism of Human Serum Ceruloplasmin (Cp) Catalysis. Tian S; Jones SM; Jose A; Solomon EI J Am Chem Soc; 2019 Jul; 141(27):10736-10743. PubMed ID: 31203609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]