These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 23631503)

  • 21. Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling.
    Balloni S; Calvi EM; Damiani F; Bistoni G; Calvitti M; Locci P; Becchetti E; Marinucci L
    Int J Oral Maxillofac Implants; 2009; 24(4):627-35. PubMed ID: 19885402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior.
    Zhang Y; Zhang Y; Chen M; Yan J; Ye Z; Zhou Y; Tan W; Lang M
    J Colloid Interface Sci; 2012 Feb; 368(1):64-9. PubMed ID: 22154913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative analysis of mesenchymal stem cell surface marker expression for human dental mesenchymal stem cells.
    Park JY; Jeon HJ; Kim TY; Lee KY; Park K; Lee ES; Choi JM; Park CG; Jeon SH
    Regen Med; 2013 Jul; 8(4):453-66. PubMed ID: 23826699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of GDF5 through an adenovirus vector stimulates osteogenesis of human mesenchymal stem cells in vitro and in vivo.
    Cheng X; Yang T; Meng W; Liu H; Zhang T; Shi R
    Cells Tissues Organs; 2012; 196(1):56-67. PubMed ID: 22287558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures.
    Kolind K; Kraft D; Bøggild T; Duch M; Lovmand J; Pedersen FS; Bindslev DA; Bünger CE; Foss M; Besenbacher F
    Acta Biomater; 2014 Feb; 10(2):641-50. PubMed ID: 24252446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis.
    Gandhimathi C; Venugopal J; Ravichandran R; Sundarrajan S; Suganya S; Ramakrishna S
    Macromol Biosci; 2013 Jun; 13(6):696-706. PubMed ID: 23529905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
    Yang J; Cao C; Wang W; Tong X; Shi D; Wu F; Zheng Q; Guo C; Pan Z; Gao C; Wang J
    J Biomed Mater Res A; 2010 Mar; 92(3):817-29. PubMed ID: 19280635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(L-lactide-co-glycolide) scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells.
    Wojak-Cwik IM; Hintze V; Schnabelrauch M; Moeller S; Dobrzynski P; Pamula E; Scharnweber D
    J Biomed Mater Res A; 2013 Nov; 101(11):3109-22. PubMed ID: 23526792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation.
    Díez-Gil C; Krabbenborg S; García-Fruitós E; Vazquez E; Rodríguez-Carmona E; Ratera I; Ventosa N; Seras-Franzoso J; Cano-Garrido O; Ferrer-Miralles N; Villaverde A; Veciana J
    Biomaterials; 2010 Aug; 31(22):5805-12. PubMed ID: 20452667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actin cytoskeleton controls activation of Wnt/β-catenin signaling in mesenchymal cells on implant surfaces with different topographies.
    Galli C; Piemontese M; Lumetti S; Ravanetti F; Macaluso GM; Passeri G
    Acta Biomater; 2012 Aug; 8(8):2963-8. PubMed ID: 22564787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced osteogenic differentiation with 3D electrospun nanofibrous scaffolds.
    Nguyen LT; Liao S; Chan CK; Ramakrishna S
    Nanomedicine (Lond); 2012 Oct; 7(10):1561-75. PubMed ID: 22709343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thin polymer brush decouples biomaterial's micro-/nanotopology and stem cell adhesion.
    Klein Gunnewiek M; Benetti EM; Di Luca A; van Blitterswijk CA; Moroni L; Vancso GJ
    Langmuir; 2013 Nov; 29(45):13843-52. PubMed ID: 24117174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells.
    Xie Q; Wang Z; Bi X; Zhou H; Wang Y; Gu P; Fan X
    Biochem Biophys Res Commun; 2014 Mar; 446(1):98-104. PubMed ID: 24565840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis.
    Newman P; Galenano Niño JL; Graney P; Razal JM; Minett AI; Ribas J; Ovalle-Robles R; Biro M; Zreiqat H
    Sci Rep; 2016 Dec; 6():37909. PubMed ID: 27910868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.
    Hulsman M; Hulshof F; Unadkat H; Papenburg BJ; Stamatialis DF; Truckenmüller R; van Blitterswijk C; de Boer J; Reinders MJ
    Acta Biomater; 2015 Mar; 15():29-38. PubMed ID: 25554402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of microfabricated microgroove-surface devices on the morphology of mesenchymal stem cells.
    Zhang X; Aoyama T; Yasuda T; Oike M; Ito A; Tajino J; Nagai M; Fujioka R; Iijima H; Yamaguchi S; Kakinuma N; Kuroki H
    Biomed Microdevices; 2015 Dec; 17(6):116. PubMed ID: 26573821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured Brownian surfaces prepared through two-photon polymerization: investigation of stem cell response.
    Marino A; Desii A; Pellegrino M; Pellegrini M; Filippeschi C; Mazzolai B; Mattoli V; Ciofani G
    ACS Nano; 2014 Nov; 8(11):11869-82. PubMed ID: 25287044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial Inclusion Bodies: Discovering Their Better Half.
    Rinas U; Garcia-Fruitós E; Corchero JL; Vázquez E; Seras-Franzoso J; Villaverde A
    Trends Biochem Sci; 2017 Sep; 42(9):726-737. PubMed ID: 28254353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.
    Peternel S; Komel R
    Microb Cell Fact; 2010 Sep; 9():66. PubMed ID: 20831775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs.
    Seras-Franzoso J; Peebo K; Luis Corchero J; Tsimbouri PM; Unzueta U; Rinas U; Dalby MJ; Vazquez E; García-Fruitós E; Villaverde A
    Nanomedicine (Lond); 2013 Oct; 8(10):1587-99. PubMed ID: 23394133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.