BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23631538)

  • 1. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.
    Onuki Y; Horita A; Kuribayashi H; Okuno Y; Obata Y; Takayama K
    Drug Dev Ind Pharm; 2014 Jul; 40(7):937-43. PubMed ID: 23631538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of required hydrophilic-lipophilic balance of citronella oil and development of stable cream formulation.
    Meher JG; Yadav NP; Sahu JJ; Sinha P
    Drug Dev Ind Pharm; 2013 Oct; 39(10):1540-6. PubMed ID: 23025241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI as a promising tool for evaluation of the stability of cosmetic emulsions.
    Onuki Y; Kida C; Funatani C; Hayashi Y; Takayama K
    Int J Cosmet Sci; 2016 Jun; 38(3):272-8. PubMed ID: 26506087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions.
    Schmidts T; Dobler D; Nissing C; Runkel F
    J Colloid Interface Sci; 2009 Oct; 338(1):184-92. PubMed ID: 19595359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organizing Map Analysis for Understanding Comprehensive Relationships between Formulation Variables, State of Water, and the Physical Stability of Pharmaceutical Emulsions.
    Onuki Y; Hasegawa N; Horita A; Ueno N; Kida C; Hayashi Y; Obata Y; Takayama K
    Chem Pharm Bull (Tokyo); 2015; 63(11):901-6. PubMed ID: 26521854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of hydrocolloids in the creaming of oil in water emulsions.
    Vélez G; Fernández MA; Muñoz J; Williams PA; English RJ
    J Agric Food Chem; 2003 Jan; 51(1):265-9. PubMed ID: 12502419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Texture optimization of water-in-oil emulsions.
    Lemaitre-Aghazarian V; Piccerelle P; Reynier JP; Joachim J; Phan-Tan-Luu R; Sergent M
    Pharm Dev Technol; 2004; 9(2):125-34. PubMed ID: 15202571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins.
    Yamamoto Y; Araki M
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1791-5. PubMed ID: 9404055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the stability of oil-in-water emulsion using pectin-lactoferrin complexes.
    Yuliarti O; Lau ZX; Wee L; Kwan CKJ
    Int J Biol Macromol; 2019 Oct; 139():421-430. PubMed ID: 31374276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions.
    Fox CB; Anderson RC; Dutill TS; Goto Y; Reed SG; Vedvick TS
    Colloids Surf B Biointerfaces; 2008 Aug; 65(1):98-105. PubMed ID: 18440205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and assessment of stable formulations containing two herbal antimicrobials: Allium sativum L. and Eruca sativa miller seed oils.
    Sanad RA; Mabrouk MI
    Drug Dev Ind Pharm; 2016; 42(6):958-68. PubMed ID: 26467506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold processed oil-in-water emulsions for dermatological purpose: formulation design and structure analysis.
    Raposo S; Salgado A; Eccleston G; Urbano M; Ribeiro HM
    Pharm Dev Technol; 2014 Jun; 19(4):417-29. PubMed ID: 23617265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of starch Pickering emulsions for potential applications in topical formulations.
    Marku D; Wahlgren M; Rayner M; Sjöö M; Timgren A
    Int J Pharm; 2012 May; 428(1-2):1-7. PubMed ID: 22366058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.
    Liu F; Tang CH
    J Agric Food Chem; 2013 Sep; 61(37):8888-98. PubMed ID: 23977961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil.
    Miyagawa Y; Adachi S
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):625-633. PubMed ID: 28165891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.
    McClements DJ
    Adv Colloid Interface Sci; 2012 Jun; 174():1-30. PubMed ID: 22475330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of multiple emulsions water-in-oil-in-water (w/o/w) as delivery system for influenza virus antigens.
    Bozkir A; Hayta G
    J Drug Target; 2004 Apr; 12(3):157-64. PubMed ID: 15203895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions.
    Chanamai R; McClements DJ
    J Colloid Interface Sci; 2000 May; 225(1):214-218. PubMed ID: 10767163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diffusing wave spectroscopy study of pharmaceutical emulsions for physical stability assessment.
    Niederquell A; Machado AHE; Kuentz M
    Int J Pharm; 2017 Sep; 530(1-2):213-223. PubMed ID: 28720536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.