BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23631591)

  • 1. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1.
    Van Horn WD
    Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The catalytic mechanism of vitamin K epoxide reduction in a cellular environment.
    Shen G; Cui W; Cao Q; Gao M; Liu H; Su G; Gross ML; Li W
    J Biol Chem; 2021; 296():100145. PubMed ID: 33273012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer.
    Shen G; Cui W; Zhang H; Zhou F; Huang W; Liu Q; Yang Y; Li S; Bowman GR; Sadler JE; Gross ML; Li W
    Nat Struct Mol Biol; 2017 Jan; 24(1):69-76. PubMed ID: 27918545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional insights into enzymes of the vitamin K cycle.
    Tie JK; Stafford DW
    J Thromb Haemost; 2016 Feb; 14(2):236-47. PubMed ID: 26663892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase.
    Jaenecke F; Friedrich-Epler B; Parthier C; Stubbs MT
    Biochemistry; 2015 Oct; 54(42):6454-61. PubMed ID: 26435421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition.
    Shen G; Li S; Cui W; Liu S; Liu Q; Yang Y; Gross M; Li W
    J Thromb Haemost; 2018 Jun; 16(6):1164-1175. PubMed ID: 29665197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Sane DC; Hutson SM
    Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Vitamin K epoxide reductase: Fresh blood for oral anticoagulant therapies].
    Loriot MA; Beaune P
    Rev Med Interne; 2006 Dec; 27(12):979-82. PubMed ID: 17070618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin K epoxide reductase and its paralogous enzyme have different structures and functions.
    Sinhadri BCS; Jin DY; Stafford DW; Tie JK
    Sci Rep; 2017 Dec; 7(1):17632. PubMed ID: 29247216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
    Oldenburg J; Bevans CG; Müller CR; Watzka M
    Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.
    Rost S; Fregin A; Ivaskevicius V; Conzelmann E; Hörtnagel K; Pelz HJ; Lappegard K; Seifried E; Scharrer I; Tuddenham EG; Müller CR; Strom TM; Oldenburg J
    Nature; 2004 Feb; 427(6974):537-41. PubMed ID: 14765194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warfarin and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Hutson SM
    Trends Mol Med; 2004 Jul; 10(7):299-302. PubMed ID: 15242675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2.
    Chu PH; Huang TY; Williams J; Stafford DW
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19308-13. PubMed ID: 17164330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.