These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 23631759)
1. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. Bhadauria V; Bett KE; Zhou T; Vandenberg A; Wei Y; Banniza S BMC Genet; 2013 Apr; 14():31. PubMed ID: 23631759 [TBL] [Abstract][Full Text] [Related]
2. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum. Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y BMC Genomics; 2011 Jun; 12():327. PubMed ID: 21699715 [TBL] [Abstract][Full Text] [Related]
3. Cataloging proteins putatively secreted during the biotrophy-necrotrophy transition of the anthracnose pathogen Colletotrichum truncatum. Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y Plant Signal Behav; 2011 Oct; 6(10):1457-9. PubMed ID: 21897125 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Bhadauria V; Vijayan P; Wei Y; Banniza S Sci Rep; 2017 Feb; 7():42338. PubMed ID: 28186158 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y Eukaryot Cell; 2013 Jan; 12(1):2-11. PubMed ID: 22962277 [TBL] [Abstract][Full Text] [Related]
6. Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Tullu A; Buchwaldt L; Warkentin T; Taran B; Vandenberg A Theor Appl Genet; 2003 Feb; 106(3):428-34. PubMed ID: 12589542 [TBL] [Abstract][Full Text] [Related]
8. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. Torres MF; Ghaffari N; Buiate EA; Moore N; Schwartz S; Johnson CD; Vaillancourt LJ BMC Genomics; 2016 Mar; 17():202. PubMed ID: 26956617 [TBL] [Abstract][Full Text] [Related]
9. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis. Bhadauria V; MacLachlan R; Pozniak C; Banniza S BMC Genomics; 2015 Aug; 16(1):628. PubMed ID: 26296655 [TBL] [Abstract][Full Text] [Related]
10. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L. Mishra R; Mohanty JN; Chand SK; Joshi RK Plant Sci; 2018 Feb; 267():135-147. PubMed ID: 29362092 [TBL] [Abstract][Full Text] [Related]
11. First Report of Anthracnose of Lentil Incited by Colletotrichum truncatum in Bulgaria. Kaiser WJ; Mihov M; Muehlbauer FJ; Hannan RM Plant Dis; 1998 Jan; 82(1):128. PubMed ID: 30857055 [TBL] [Abstract][Full Text] [Related]
12. The Effect of Plant Age on Resistance to Colletotrichum truncatum in Lens culinaris. Vail S; Vandenberg A Plant Dis; 2012 Aug; 96(8):1118-1122. PubMed ID: 30727094 [TBL] [Abstract][Full Text] [Related]
13. Insights into the Host-Pathogen Interaction Pathways through RNA-Seq Analysis of Mishra GP; Aski MS; Bosamia T; Chaurasia S; Mishra DC; Bhati J; Kumar A; Javeria S; Tripathi K; Kohli M; Kumar RR; Singh AK; Devi J; Kumar S; Dikshit HK Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052429 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. Li J; Zhang QY; Gao ZH; Wang F; Duan K; Ye ZW; Gao QH Gene; 2013 Sep; 527(1):215-27. PubMed ID: 23806759 [TBL] [Abstract][Full Text] [Related]
15. Plant growth promotion and differential expression of defense genes in chilli pepper against Colletotrichum truncatum induced by Trichoderma asperellum and T. harzianum. Yadav M; Divyanshu K; Dubey MK; Rai A; Kumar S; Tripathi YN; Shukla V; Upadhyay RS BMC Microbiol; 2023 Mar; 23(1):54. PubMed ID: 36864373 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic provides novel insights into the soybean response to Boufleur TR; Massola Júnior NS; Becerra S; Baraldi E; Bibiano LBJ; Sukno SA; Thon MR; Baroncelli R Front Plant Sci; 2022; 13():1046418. PubMed ID: 36507428 [TBL] [Abstract][Full Text] [Related]
17. Identification of anthracnose race 1 resistance loci in lentil by integrating linkage mapping and genome-wide association study. Gela T; Ramsay L; Haile TA; Vandenberg A; Bett K Plant Genome; 2021 Nov; 14(3):e20131. PubMed ID: 34482633 [TBL] [Abstract][Full Text] [Related]
18. Identification of Lentil Germ Plasm Resistant to Colletotrichum truncatum and Characterization of Two Pathogen Races. Buchwaldt L; Anderson KL; Morrall RA; Gossen BD; Bernier CC Phytopathology; 2004 Mar; 94(3):236-43. PubMed ID: 18943971 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. Khorramdelazad M; Bar I; Whatmore P; Smetham G; Bhaaskaria V; Yang Y; Bai SH; Mantri N; Zhou Y; Ford R BMC Genomics; 2018 Jan; 19(1):108. PubMed ID: 29385986 [TBL] [Abstract][Full Text] [Related]
20. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Vargas WA; Martín JM; Rech GE; Rivera LP; Benito EP; Díaz-Mínguez JM; Thon MR; Sukno SA Plant Physiol; 2012 Mar; 158(3):1342-58. PubMed ID: 22247271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]