These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 23631913)
1. Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. Cissé OH; Almeida JM; Fonseca A; Kumar AA; Salojärvi J; Overmyer K; Hauser PM; Pagni M mBio; 2013 Apr; 4(3):e00055-13. PubMed ID: 23631913 [TBL] [Abstract][Full Text] [Related]
2. Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Kavroumatzi CK; Matziarli P; Chatzidimopoulos M; Boutsika A; Tsitsigiannis DI; Paplomatas E; Zambounis A J Fungi (Basel); 2024 Apr; 10(5):. PubMed ID: 38786680 [No Abstract] [Full Text] [Related]
4. Unravelling early events in the Taphrina deformans-Prunus persica interaction: an insight into the differential responses in resistant and susceptible genotypes. Svetaz LA; Bustamante CA; Goldy C; Rivero N; Müller GL; Valentini GH; Fernie AR; Drincovich MF; Lara MV Plant Cell Environ; 2017 Aug; 40(8):1456-1473. PubMed ID: 28244594 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomics of pneumocystis species suggests the absence of genes for myo-inositol synthesis and reliance on inositol transport and metabolism. Porollo A; Sesterhenn TM; Collins MS; Welge JA; Cushion MT mBio; 2014 Nov; 5(6):e01834. PubMed ID: 25370490 [TBL] [Abstract][Full Text] [Related]
6. Insights into the Transcriptional Reprogramming of Peach Leaves Inoculated with Maniatis EI; Karamichali I; Stefanidou E; Boutsika A; Tsitsigiannis DI; Paplomatas E; Madesis P; Zambounis A Plants (Basel); 2024 Mar; 13(6):. PubMed ID: 38592856 [TBL] [Abstract][Full Text] [Related]
7. Prunus persica apoplastic proteome analysis reveals candidate proteins involved in the resistance and defense against Taphrina deformans. Butassi E; Novello MA; Lara MV J Plant Physiol; 2022 Sep; 276():153780. PubMed ID: 35930825 [TBL] [Abstract][Full Text] [Related]
8. The genome of the emerging barley pathogen Ramularia collo-cygni. McGrann GR; Andongabo A; Sjökvist E; Trivedi U; Dussart F; Kaczmarek M; Mackenzie A; Fountaine JM; Taylor JM; Paterson LJ; Gorniak K; Burnett F; Kanyuka K; Hammond-Kosack KE; Rudd JJ; Blaxter M; Havis ND BMC Genomics; 2016 Aug; 17():584. PubMed ID: 27506390 [TBL] [Abstract][Full Text] [Related]
9. A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao. Mondego JM; Carazzolle MF; Costa GG; Formighieri EF; Parizzi LP; Rincones J; Cotomacci C; Carraro DM; Cunha AF; Carrer H; Vidal RO; Estrela RC; García O; Thomazella DP; de Oliveira BV; Pires AB; Rio MC; Araújo MR; de Moraes MH; Castro LA; Gramacho KP; Gonçalves MS; Neto JP; Neto AG; Barbosa LV; Guiltinan MJ; Bailey BA; Meinhardt LW; Cascardo JC; Pereira GA BMC Genomics; 2008 Nov; 9():548. PubMed ID: 19019209 [TBL] [Abstract][Full Text] [Related]
10. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
14. Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerinii. Goodwin SB; Waalwijk C; Kema GH; Cavaletto JR; Zhang G Mol Genet Genomics; 2003 Apr; 269(1):1-12. PubMed ID: 12715148 [TBL] [Abstract][Full Text] [Related]
15. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize. Lu S; Gillian Turgeon B; Edwards MC Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492 [TBL] [Abstract][Full Text] [Related]
16. Comparative proteomic and metabolomic studies between Prunus persica genotypes resistant and susceptible to Taphrina deformans suggest a molecular basis of resistance. Goldy C; Svetaz LA; Bustamante CA; Allegrini M; Valentini GH; Drincovich MF; Fernie AR; Lara MV Plant Physiol Biochem; 2017 Sep; 118():245-255. PubMed ID: 28651230 [TBL] [Abstract][Full Text] [Related]
17. Intra-specific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae. Singh G; Dyer PS; Ashby AM Curr Genet; 1999 Nov; 36(5):290-300. PubMed ID: 10591970 [TBL] [Abstract][Full Text] [Related]
18. Genome sequence of the brown rot fungal pathogen Monilinia fructigena. Landi L; De Miccolis Angelini RM; Pollastro S; Abate D; Faretra F; Romanazzi G BMC Res Notes; 2018 Oct; 11(1):758. PubMed ID: 30352625 [TBL] [Abstract][Full Text] [Related]
19. The genome assembly of the fungal pathogen Pyrenochaeta lycopersici from Single-Molecule Real-Time sequencing sheds new light on its biological complexity. Dal Molin A; Minio A; Griggio F; Delledonne M; Infantino A; Aragona M PLoS One; 2018; 13(7):e0200217. PubMed ID: 29979772 [TBL] [Abstract][Full Text] [Related]
20. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata, an important maize pathogenic fungus. Gao S; Li Y; Gao J; Suo Y; Fu K; Li Y; Chen J BMC Genomics; 2014 Jul; 15(1):627. PubMed ID: 25056288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]